11 research outputs found

    Progesterone Receptor Isoforms, Nuclear Corepressor-1 and Steroid Receptor Coactivator-1 and B-Cell Lymphoma 2 and Akt and Akt Phosphorylation Status in Uterine Myomas after Ulipristal Acetate Treatment: A Systematic Immunohistochemical Evaluation.

    No full text
    To investigate whether ulipristal acetate (UPA) treatment modifies the expression of progesterone receptor (PR), its nuclear cofactors steroid receptor coactivator-1 (SRC1) and nuclear corepressor-1 (NCoR1), prosurvival factor B-cell lymphoma 2 (Bcl-2), and Akt in uterine myomas. Prospective study of 59 women with symptomatic myomas undergoing myomectomy. Forty-two patients were treated preoperatively with UPA; the remaining 17 were not and they served as controls. Tissue microarrays were obtained from surgical specimens and immunohistochemistry was performed. Blinded quantification of expression of PR (PR-A vs. PR-B), coactivator SRC1 and corepressor NCoR1, and prosurvival factor Bcl-2, and Akt and evaluation of Akt phosphorylation levels. Compared with the control group, UPA does not alter PR protein levels or expression patterns in myomas, and the PR-A/PR-B ratio was similar, as well as cytoplasmic or nuclear expression of cofactors SRC1 and NCoR1. Bcl-2 was heterogeneously expressed throughout the samples and no significant modification in expression was evidenced. No significant difference was found in Akt expression and phosphorylation between treated and untreated myomas. This study did not find any significant change in the expression of the studied factors in myomas after UPA exposure. In conclusion, various theories on myomas cells proposed on the basis of in vitro studies are not supported in vivo

    In vivo mechanisms of action of ulipristal acetate, a selective progesterone receptor modulator, in uterine fibroid volume reduction

    No full text
    Uterine fibroids are the most common benign tumor in women of reproductive age. Ulipristal acetate (UPA) therapy permanently reduces the volume of fibroids in ~80% of cases. However, its in vivo mechanism of action remains unclear, and why some fibroids do not respond to treatment is not known. The present work aimed to identify the mechanism(s) by which UPA mediates its effects in fibroids, and the reasons for the lack of response in some cases by comparing biopsies from untreated or UPA-treated patients, taking into account the response profile. We have demonstrated that UPA in vivo causes inhibition of cell proliferation, cell death during the first few months of therapy, and very important remodeling of the extracellular matrix. The response to treatment depends on the stimulation of cell death and the action of matrix metalloproteinases which play key roles in the resorption of fibrosis(BIFA - Sciences biomédicales et pharmaceutiques) -- UCL, 201

    Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization

    Get PDF
    Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics

    Generation and characterization of a tamoxifen‐inducible Vsx1‐CreER

    No full text
    In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreER BAC transgenic mouse line that drives CreER recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreER transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreER line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons

    Generation and characterization of a tamoxifen-inducible Vsx1-CreER line to target V2 interneurons in the mouse developing spinal cord.

    No full text
    In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreER BAC transgenic mouse line that drives CreER recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreER transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreER line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons

    Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization.

    No full text
    Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics

    Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content.

    No full text
    Megalin/LRP2 is a major receptor supporting apical endocytosis in kidney proximal tubular cells. We have previously reported that kidney-specific perinatal ablation of the megalin gene in cystinotic mice, a model of nephropathic cystinosis, essentially blocks renal cystine accumulation and partially preserves kidney tissue integrity. Here, we examined whether inhibition of the megalin pathway in adult cystinotic mice by dietary supplementation (5x-fold vs control regular diet) with the dibasic amino-acids (dAAs), lysine or arginine, both of which are used to treat patients with other rare metabolic disorders, could also decrease renal cystine accumulation and protect cystinotic kidneys. Using surface plasmon resonance, we first showed that both dAAs compete for protein ligand binding to immobilized megalin in a concentration-dependent manner, with identical inhibition curves by L- and D-stereoisomers. In cystinotic mice, 2-month diets with 5x-L-lysine and 5x-L-arginine were overall well tolerated, while 5x-D-lysine induced strong polyuria but no weight loss. All diets induced a marked increase of dAA urinary excretion, most prominent under 5x-D-lysine, without sign of kidney insufficiency. Renal cystine accumulation was slowed down approx. twofold by L-dAAs, and totally suppressed by D-lysine. We conclude that prolonged dietary manipulation of the megalin pathway in kidneys is feasible, tolerable and can be effective in vivo

    alpha 1AMP-Activated Protein Kinase Protects against Lipopolysaccharide-Induced Endothelial Barrier Disruption via Junctional Reinforcement and Activation of the p38 MAPK/HSP27 Pathway

    No full text
    Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.status: publishe
    corecore