148 research outputs found

    Antibody Therapies for the Treatment of Acute Myeloid Leukemia: Exploring Current and Emerging Therapeutic Targets

    Get PDF
    INTRODUCTION: Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED: In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION: One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions

    Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c)

    Full text link
    Treatment with Menin inhibitor (MI) disrupts the interaction between Menin and MLL1 or MLL1-fusion protein (FP), inhibits HOXA9/MEIS1, induces differentiation and loss of survival of AML harboring MLL1 re-arrangement (r) and FP, or expressing mutant (mt)-NPM1. Following MI treatment, although clinical responses are common, the majority of patients with AML with MLL1-r or mt-NPM1 succumb to their disease. Pre-clinical studies presented here demonstrate that genetic knockout or degradation of Menin or treatment with the MI SNDX-50469 reduces MLL1/MLL1-FP targets, associated with MI-induced differentiation and loss of viability. MI treatment also attenuates BCL2 and CDK6 levels. Co-treatment with SNDX-50469 and BCL2 inhibitor (venetoclax), or CDK6 inhibitor (abemaciclib) induces synergistic lethality in cell lines and patient-derived AML cells harboring MLL1-r or mtNPM1. Combined therapy with SNDX-5613 and venetoclax exerts superior in vivo efficacy in a cell line or PD AML cell xenografts harboring MLL1-r or mt-NPM1. Synergy with the MI-based combinations is preserved against MLL1-r AML cells expressing FLT3 mutation, also CRISPR-edited to introduce mtTP53. These findings highlight the promise of clinically testing these MI-based combinations against AML harboring MLL1-r or mtNPM1

    Impact of Venetoclax and Azacitidine in Treatment-NaĂŻve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations

    Get PDF
    partially_open16Purpose: To evaluate efficacy and safety of venetoclax + azacitidine among treatment-naïve patients with IDH1/2-mutant (mut) acute myeloid leukemia (AML). Patients and methods: Data were pooled from patients enrolled in a phase III study (NCT02993523) that compared patients treated with venetoclax + azacitidine or placebo + azacitidine and a prior phase Ib study (NCT02203773) where patients were treated with venetoclax + azacitidine. Enrolled patients were ineligible for intensive therapy due to age ≥75 years and/or comorbidities. Patients on venetoclax + azacitidine received venetoclax 400 mg orally (days 1-28) and azacitidine (75 mg/m2; days 1-7/28-day cycle). Results: In the biomarker-evaluable population, IDH1/2mut was detected in 81 (26%) and 28 (22%) patients in the venetoclax + azacitidine and azacitidine groups. Composite complete remission [CRc, complete remission (CR)+CR with incomplete hematologic recovery (CRi)] rates (venetoclax + azacitidine/azacitidine) among patients with IDH1/2mut were 79%/11%, median duration of remission (mDoR) was 29.5/9.5 months, and median overall survival (mOS) was 24.5/6.2 months. CRc rates among patients with IDH1/2 wild-type (WT) were 63%/31%, mDoR 17.5/10.3 months, and mOS 12.3/10.1 months. In patients with IDH1mut, CRc rates (venetoclax + azacitidine/azacitidine) were 66.7%/9.1% and mOS 15.2/2.2 months. In patients with IDH2mut, CRc rates were 86.0%/11.1% and mOS not reached (NR)/13.0 months. Patients with IDH1/2 WT AML treated with venetoclax + azacitidine with poor-risk cytogenetics had inferior outcomes compared with patients with IDH1/2mut, who had superior outcomes regardless of cytogenetic risk (mOS, IDH1/2mut: intermediate-risk, 24.5 months; poor-risk, NR; IDH1/2 WT: intermediate, 19.2 and poor, 7.4 months). There were no unexpected toxicities in the venetoclax + azacitidine group. Conclusions: Patients with IDH1/2mut who received venetoclax + azacitidine had high response rates, durable remissions, and significant OS; cytogenetic risk did not mitigate the favorable outcomes seen from this regimen for IDH1/2mut.partially_openembargoed_20230131Pollyea, Daniel A; DiNardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop MPollyea, Daniel A; Dinardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop

    Targeting of epigenetic co-dependencies enhances anti-AML efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1

    Get PDF
    Monotherapy with Menin inhibitor (MI), e.g., SNDX-5613, induces clinical remissions in patients with relapsed/refractory AML harboring MLL1-r or mtNPM1, but most patients either fail to respond or eventually relapse. Utilizing single-cell RNA-Seq, ChiP-Seq, ATAC-Seq, RNA-Seq, RPPA, and mass cytometry (CyTOF) analyses, present pre-clinical studies elucidate gene-expression correlates of MI efficacy in AML cells harboring MLL1-r or mtNPM1. Notably, MI-mediated genome-wide, concordant, log2 fold-perturbations in ATAC-Seq and RNA-Seq peaks were observed at the loci of MLL-FP target genes, with upregulation of mRNAs associated with AML differentiation. MI treatment also reduced the number of AML cells expressing the stem/progenitor cell signature. A protein domain-focused CRISPR-Cas9 screen in MLL1-r AML cells identified targetable co-dependencies with MI treatment, including BRD4, EP300, MOZ and KDM1A. Consistent with this, in vitro co-treatment with MI and BET, MOZ, LSD1 or CBP/p300 inhibitor induced synergistic loss of viability of AML cells with MLL1-r or mtNPM1. Co-treatment with MI and BET or CBP/p300 inhibitor also exerted significantly superior in vivo efficacy in xenograft models of AML with MLL1-r. These findings highlight novel, MI-based combinations that could prevent escape of AML stem/progenitor cells following MI monotherapy, which is responsible for therapy-refractory AML relapse

    Hematopoiesis under telomere attrition at the single-cell resolution

    Get PDF
    The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells’ self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells’ skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance

    Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells.

    Get PDF
    There is an unmet need to overcome nongenetic therapy-resistance to improve outcomes in AML, especially post-myeloproliferative neoplasm (MPN) secondary (s) AML. Studies presented describe effects of genetic knockout, degradation or small molecule targeted-inhibition of GFI1/LSD1 on active enhancers, altering gene-expressions and inducing differentiation and lethality in AML and (MPN) sAML cells. A protein domain-focused CRISPR screen in LSD1 (KDM1A) inhibitor (i) treated AML cells, identified BRD4, MOZ, HDAC3 and DOT1L among the codependencies. Our findings demonstrate that co-targeting LSD1 and one of these co-dependencies exerted synergistic in vitro lethality in AML and post-MPN sAML cells. Co-treatment with LSD1i and the JAKi ruxolitinib was also synergistically lethal against post-MPN sAML cells. LSD1i pre-treatment induced GFI1, PU.1 and CEBPα but depleted c-Myc, overcoming nongenetic resistance to ruxolitinib, or to BETi in post-MPN sAML cells. Co-treatment with LSD1i and BETi or ruxolitinib exerted superior in vivo efficacy against post-MPN sAML cells. These findings highlight LSD1i-based combinations that merit testing for clinical efficacy, especially to overcome nongenetic therapy-resistance in AML and post-MPN sAML

    Hereditary Predispositions to Myelodysplastic Syndrome

    No full text
    Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic disorders characterized by ineffective hematopoiesis, bone marrow dysplasia, and peripheral cytopenias. Familial forms of MDS have traditionally been considered rare, especially in adults; however, the increasing availability of somatic and germline genetic analyses has identified multiple susceptibility loci. Bone marrow failure syndromes have been well-described in the pediatric setting, e.g., Fanconi anemia (FA), dyskeratosis congenita (DC), Diamond–Blackfan anemia (DBA), and Shwachman–Diamond syndrome (SBS), hallmarked by clinically-recognizable phenotypes (e.g., radial ray anomalies in FA) and significantly increased risks for MDS and/or acute myeloid leukemia (AML) in the setting of bone marrow failure. However, additional families with multiple cases of MDS or AML have long been reported in the medical literature with little known regarding potential hereditary etiologies. Over the last decade, genomic investigation of such families has revealed multiple genes conferring inherited risks for MDS and/or AML as the primary malignancy, including RUNX1, ANKRD26, DDX41, ETV6, GATA2, and SRP72. As these syndromes are increasingly appreciated in even apparently de novo presentations of MDS, it is important for hematologists/oncologists to become familiar with these newly-described syndromes. Herein, we provide a review of familial MDS syndromes and practical aspects of management in patients with predisposition syndromes
    • …
    corecore