14 research outputs found

    Topical Photodynamic Therapy Generates Bioactive Microvesicle Particles: Evidence for a Pathway Involved in Immunosuppressive Effects

    No full text
    Although effective in treating actinic damage, topical photodynamic therapy (PDT) has been shown to be immunosuppressive through unknown mechanisms, which could potentially limit its effectiveness. Multiple types of environmental stressors, including PDT, can produce the immunosuppressive lipid mediator platelet-activating factor (PAF). Because PAF can produce subcellular microvesicle particles (MVPs), these studies tested whether PDT can generate PAF and MVP release and whether these are involved in PDT-induced immunosuppression. Previously, topical PDT using blue light and 5-aminolevulinic acid was found to be a potent stimulus for PAF production in mice and human skin explants and human patients, and we show that experimental PDT also generates high levels of MVP. PDT-generated MVPs were independent of the PAF receptor but were dependent on the MVP-generating enzyme acid sphingomyelinase. Patients undergoing topical PDT treatment to at least 10% of body surface area showed local and systemic immunosuppression as measured by inhibition of delayed-type hypersensitivity reactions. Finally, using a murine model of contact hypersensitivity, PDT immunosuppression was blocked by genetic and pharmacologic inhibition of acid sphingomyelinase and genetic inhibition of PAF receptor signaling. These studies describe a mechanism involving MVP through which PDT exerts immunomodulatory effects, providing a potential target to improve its effectiveness

    Building a Better Infarct: Modulation of Collagen Cross-Linking to Increase Infarct Stiffness and Reduce Left Ventricular Dilation Post-Myocardial Infarction

    Get PDF
    Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood.The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n = 88) and MMP-9 null (MMP-9-/-; n = 92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n = 42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9-/- showed only a 2-fold increase (p \u3c 0.05). Biaxial mechanical testing revealed that MMP-9-/- infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p \u3c 0.05). Paradoxically, MMP-9-/- infarcts had a 1.8-fold reduction in collagen deposition (p \u3c 0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p \u3c 0.05) in MMP-9-/- infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p \u3c 0.05) and reduced fibronectin fragmentation by 49% (p \u3c 0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase

    Topical Photodynamic Therapy Generates Bioactive Microvesicle Particles: Evidence for a Pathway Involved in Immunosuppressive Effects

    No full text
    Although effective in treating actinic damage, topical photodynamic therapy (PDT) has been shown to be immunosuppressive through unknown mechanisms, which could potentially limit its effectiveness. Multiple types of environmental stressors, including PDT, can produce the immunosuppressive lipid mediator platelet-activating factor (PAF). Because PAF can produce subcellular microvesicle particles (MVPs), these studies tested whether PDT can generate PAF and MVP release and whether these are involved in PDT-induced immunosuppression. Previously, topical PDT using blue light and 5-aminolevulinic acid was found to be a potent stimulus for PAF production in mice and human skin explants and human patients, and we show that experimental PDT also generates high levels of MVP. PDT-generated MVPs were independent of the PAF receptor but were dependent on the MVP-generating enzyme acid sphingomyelinase. Patients undergoing topical PDT treatment to at least 10% of body surface area showed local and systemic immunosuppression as measured by inhibition of delayed-type hypersensitivity reactions. Finally, using a murine model of contact hypersensitivity, PDT immunosuppression was blocked by genetic and pharmacologic inhibition of acid sphingomyelinase and genetic inhibition of PAF receptor signaling. These studies describe a mechanism involving MVP through which PDT exerts immunomodulatory effects, providing a potential target to improve its effectiveness

    Cd36 is a Matrix Metalloproteinase-9 Substrate that Stimulates Neutrophil Apoptosis and Removal during Cardiac Remodeling

    No full text
    Background-After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling. Methods and Results-Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P \u3c 0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression. Conclusions-Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis

    The Mouse Heart Attack Research Tool 1.0 Database

    No full text
    The generation of big data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large data set of over 10 yr of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling after myocardial infarction (MI) in mice. We designed the mHART REDCap database using our own data to integrate cardiovascular community participation. We generated physiological, biochemical, cellular, and proteomic outputs from plasma and left ventricles obtained from post-MI and no-MI (naïve) control groups. We included both male and female mice ranging in age from 3 to 36 mo old. After variable collection, data underwent quality assessment for data curation (e.g., eliminate technical errors, check for completeness, remove duplicates, and define terms). Currently, mHART 1.0 contains \u3e 888,000 data points and includes results from \u3e 2,100 unique mice. Database performance was tested, and an example is provided to illustrate database utility. This report explains how the first version of the mHART database was established and provides researchers with a standard framework to aid in the integration of their data into our database or in the development of a similar database. NEW & NOTEWORTHY The Mouse Heart Attack Research Tool combines \u3e 888,000 cardiovascular data points from \u3e 2,100 mice. We provide this large data set as a REDCap database to generate novel hypotheses and identify new predictive markers of adverse left ventricular remodeling following myocardial infarction in mice and provide examples of use. The Mouse Heart Attack Research Tool is the first database of this size that integrates data sets across platforms that include genomic, proteomic, histological, and physiological data

    Citrate Synthase is a Novel in Vivo Matrix Metalloproteinase-9 Substrate that Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle

    No full text
    Aim: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). Results: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p \u3c 0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p \u3c 0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. Innovation: By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. Conclusion: Our data suggest that MMP-9 deletion improves mitochondrial function post-MI

    Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates

    No full text
    Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis
    corecore