142 research outputs found
Evolutional Entanglement in Nonequilibrium Processes
Entanglement in nonequilibrium systems is considered. A general definition
for entanglement measure is introduced, which can be applied for characterizing
the level of entanglement produced by arbitrary operators. Applying this
definition to reduced density matrices makes it possible to measure the
entanglement in nonequilibrium as well as in equilibrium statistical systems.
An example of a multimode Bose-Einstein condensate is discussed.Comment: 10 pages, Late
Magnetic Field Tomography
Neutral atoms may be trapped via the interaction of their magnetic dipole
moment with magnetic field gradients. One of the possible schemes is the
cloverleaf trap. It is often desirable to have at hand a fast and precise
technique for measuring the magnetic field distribution. We introduce a novel
diagnostic tool for instantaneous imaging the equipotential lines of a magnetic
field within a region of space (the vacuum recipient) that is not accessible to
massive probes. Our technique is based on spatially resolved observation of the
fluorescence emitted by a hot beam of sodium atoms crossing a thin slice of
resonant laser light within the magnetic field region to be investigated. The
inhomogeneous magnetic field spatially modulates the resonance condition
between the Zeeman-shifted hyperfine sublevels and the laser light and
therefore the amount of scattered photons. We demonstrate this technique by
mapping the field of our cloverleaf trap in three dimensions under various
conditions.Comment: 8 pages, 8 figure
Condensate fraction of cold gases in non-uniform external potential
Exact calculation of the condensate fraction in multi-dimensional
inhomogeneous interacting Bose systems which do not possess continuous
symmetries is a difficult computational problem. We have developed an iterative
procedure which allows to calculate the condensate fraction as well as the
corresponding eigenfunction of the one-body density matrix. We successfully
validate this procedure in diffusion Monte Carlo simulations of a Bose gas in
an optical lattice at zero temperature. We also discuss relation between
different criteria used for testing coherence in cold Bose systems, such as
fraction of particles that are superfluid, condensed or are in the
zero-momentum state.Comment: 4 pages, 2 figure
Kinetic energy of Bose systems and variation of statistical averages
The problem of defining the average kinetic energy of statistical systems is
addressed. The conditions of applicability for the formula, relating the
average kinetic energy with the mass derivative of the internal energy, are
analysed. It is shown that incorrectly using this formula, outside its region
of validity, leads to paradoxes. An equation is found for a parametric
derivative of the average for an arbitrary operator. A special attention is
paid to the mass derivative of the internal energy, for which a general formula
is derived, without invoking the adiabatic approximation and taking into
account the mass dependence of the potential-energy operator. The results are
illustrated by the case of a low-temperature dilute Bose gas.Comment: Latex, 11 page
Number-of-particle fluctuations in systems with Bose-Einstein condensate
Fluctuations of the number of particles for the dilute interacting gas with
Bose-Einstein condensate are considered. It is shown that in the Bogolubov
theory these fluctuations are normal. The fluctuations of condensed as well as
noncondensed particles are also normal both in canonical and grand canonical
ensembles.Comment: Latex file, 12 page
Fermi-Bose mapping for one-dimensional Bose gases
One-dimensional Bose gases are considered, interacting either through the
hard-core potentials or through the contact delta potentials. Interest in these
gases gained momentum because of the recent experimental realization of
quasi-one-dimensional Bose gases in traps with tightly confined radial motion,
achieving the Tonks-Girardeau (TG) regime of strongly interacting atoms. For
such gases the Fermi-Bose mapping of wavefunctions is applicable. The aim of
the present communication is to give a brief survey of the problem and to
demonstrate the generality of this mapping by emphasizing that: (i) It is valid
for nonequilibrium wavefunctions, described by the time-dependent Schr\"odinger
equation, not merely for stationary wavefunctions. (ii) It gives the whole
spectrum of all excited states, not merely the ground state. (iii) It applies
to the Lieb-Liniger gas with the contact interaction, not merely to the TG gas
of impenetrable bosons.Comment: Brief review, Latex file, 15 page
Optimal trap shape for a Bose gas with attractive interactions
Dilute Bose gas with attractive interactions is considered at zero
temperature, when practically all atoms are in Bose-Einstein condensate. The
problem is addressed aiming at answering the question: What is the optimal trap
shape allowing for the condensation of the maximal number of atoms with
negative scattering lengths? Simple and accurate analytical formulas are
derived allowing for an easy analysis of the optimal trap shapes. These
analytical formulas are the main result of the paper.Comment: Latex file, 21 page
Superfluid drag of two-species Bose-Einstein condensates in optical lattices
We study two-species Bose-Einstein condensates in quasi two-dimensional
optical lattices of varying geometry and potential depth. Based on the
numerically exact Bloch and Wannier functions obtained using the plane-wave
expansion method, we quantify the drag (entrainment coupling) between the
condensate components. This drag originates from the (short range)
inter-species interaction and increases with the kinetic energy. As a result of
the interplay between interaction and kinetic energy effects, the
superfluid-drag coefficient shows a non-monotonic dependence on the lattice
depth. To make contact with future experiments, we quantitatively investigate
the drag for mass ratios corresponding to relevant atomic species.Comment: 6 pages, 4 figures. Accepted in its original form but minor changes
have been don
- …