144 research outputs found

    Evolutional Entanglement in Nonequilibrium Processes

    Full text link
    Entanglement in nonequilibrium systems is considered. A general definition for entanglement measure is introduced, which can be applied for characterizing the level of entanglement produced by arbitrary operators. Applying this definition to reduced density matrices makes it possible to measure the entanglement in nonequilibrium as well as in equilibrium statistical systems. An example of a multimode Bose-Einstein condensate is discussed.Comment: 10 pages, Late

    Magnetic Field Tomography

    Full text link
    Neutral atoms may be trapped via the interaction of their magnetic dipole moment with magnetic field gradients. One of the possible schemes is the cloverleaf trap. It is often desirable to have at hand a fast and precise technique for measuring the magnetic field distribution. We introduce a novel diagnostic tool for instantaneous imaging the equipotential lines of a magnetic field within a region of space (the vacuum recipient) that is not accessible to massive probes. Our technique is based on spatially resolved observation of the fluorescence emitted by a hot beam of sodium atoms crossing a thin slice of resonant laser light within the magnetic field region to be investigated. The inhomogeneous magnetic field spatially modulates the resonance condition between the Zeeman-shifted hyperfine sublevels and the laser light and therefore the amount of scattered photons. We demonstrate this technique by mapping the field of our cloverleaf trap in three dimensions under various conditions.Comment: 8 pages, 8 figure

    Kinetic energy of Bose systems and variation of statistical averages

    Full text link
    The problem of defining the average kinetic energy of statistical systems is addressed. The conditions of applicability for the formula, relating the average kinetic energy with the mass derivative of the internal energy, are analysed. It is shown that incorrectly using this formula, outside its region of validity, leads to paradoxes. An equation is found for a parametric derivative of the average for an arbitrary operator. A special attention is paid to the mass derivative of the internal energy, for which a general formula is derived, without invoking the adiabatic approximation and taking into account the mass dependence of the potential-energy operator. The results are illustrated by the case of a low-temperature dilute Bose gas.Comment: Latex, 11 page

    Condensate fraction of cold gases in non-uniform external potential

    Full text link
    Exact calculation of the condensate fraction in multi-dimensional inhomogeneous interacting Bose systems which do not possess continuous symmetries is a difficult computational problem. We have developed an iterative procedure which allows to calculate the condensate fraction as well as the corresponding eigenfunction of the one-body density matrix. We successfully validate this procedure in diffusion Monte Carlo simulations of a Bose gas in an optical lattice at zero temperature. We also discuss relation between different criteria used for testing coherence in cold Bose systems, such as fraction of particles that are superfluid, condensed or are in the zero-momentum state.Comment: 4 pages, 2 figure

    Number-of-particle fluctuations in systems with Bose-Einstein condensate

    Full text link
    Fluctuations of the number of particles for the dilute interacting gas with Bose-Einstein condensate are considered. It is shown that in the Bogolubov theory these fluctuations are normal. The fluctuations of condensed as well as noncondensed particles are also normal both in canonical and grand canonical ensembles.Comment: Latex file, 12 page

    Fermi-Bose mapping for one-dimensional Bose gases

    Full text link
    One-dimensional Bose gases are considered, interacting either through the hard-core potentials or through the contact delta potentials. Interest in these gases gained momentum because of the recent experimental realization of quasi-one-dimensional Bose gases in traps with tightly confined radial motion, achieving the Tonks-Girardeau (TG) regime of strongly interacting atoms. For such gases the Fermi-Bose mapping of wavefunctions is applicable. The aim of the present communication is to give a brief survey of the problem and to demonstrate the generality of this mapping by emphasizing that: (i) It is valid for nonequilibrium wavefunctions, described by the time-dependent Schr\"odinger equation, not merely for stationary wavefunctions. (ii) It gives the whole spectrum of all excited states, not merely the ground state. (iii) It applies to the Lieb-Liniger gas with the contact interaction, not merely to the TG gas of impenetrable bosons.Comment: Brief review, Latex file, 15 page

    Optimal trap shape for a Bose gas with attractive interactions

    Full text link
    Dilute Bose gas with attractive interactions is considered at zero temperature, when practically all atoms are in Bose-Einstein condensate. The problem is addressed aiming at answering the question: What is the optimal trap shape allowing for the condensation of the maximal number of atoms with negative scattering lengths? Simple and accurate analytical formulas are derived allowing for an easy analysis of the optimal trap shapes. These analytical formulas are the main result of the paper.Comment: Latex file, 21 page

    Superfluid drag of two-species Bose-Einstein condensates in optical lattices

    Full text link
    We study two-species Bose-Einstein condensates in quasi two-dimensional optical lattices of varying geometry and potential depth. Based on the numerically exact Bloch and Wannier functions obtained using the plane-wave expansion method, we quantify the drag (entrainment coupling) between the condensate components. This drag originates from the (short range) inter-species interaction and increases with the kinetic energy. As a result of the interplay between interaction and kinetic energy effects, the superfluid-drag coefficient shows a non-monotonic dependence on the lattice depth. To make contact with future experiments, we quantitatively investigate the drag for mass ratios corresponding to relevant atomic species.Comment: 6 pages, 4 figures. Accepted in its original form but minor changes have been don
    corecore