4 research outputs found

    Speciation studies at the Illite - solution interface: Part 2 – Co-sorption of uranyl and phosphate ions

    No full text
    International audienceAlthough it is well known that clays and phosphate ions (hereafter referred to as "P") can contribute to the long term uptake of uranium (U) in a variety of geochemical systems, work is still needed to document the surface speciation of U(VI) and P sorbed on relevant clay minerals such as illite. Following on from previous work showing strong sorption of phosphate ligands on the surface of a homoionic Na-illite ([1]), we addressed the (competitive/synergistic) mechanisms of (co)sorption of trace levels of uranyl ions (1-10 mu M) and phosphate ligands (100 mu M) onto this clay, and the identity of the surface species formed, by in situ spectroscopy monitoring of the clay-solution interface along sorption. We also performed complementary batch sorption experiments and electrophoretic mobility (EM) measurements. Macroscopic data indicated a uranyl sorption dependent on pH, aqueous U concentration and clay-to-solution ratio, a signature of P on the U sorption, and a promotion of P sorption with U concentration. Macroscopic and EM data also suggested mostly reversible mechanisms of P and U co-sorption that confer negative charges on the mineral surface and involve several types of uranyl phosphate surface species and/or surface sites present on the clay edges. FTIR interface spectra confirmed that several types of inner sphere uranyl phosphate surface species formed at acidic pH at the illite-solution interface, as a function of U surface coverage and/or reaction time. An inner-sphere uranyl phosphate surface complex, likely with a Ubridging structure, was formed rapidly on high-affinity surface sites existing in limited quantities on the clay edges. Another U-P surface complex (with a possible P-bridging structure) was progressively formed in increasing amounts with U surface coverage and time on low affinity clay edge sites. Finally, a third U-P surface species having an autunite-like structure (probably a U-P polynuclear surface species) was formed on the illite surface at high U concentration (10 mu M). The two later species competed with the existence on the illite surface of inner sphere surface complexes and outer-sphere surface complex of phosphate, which were identified in the absence of U. Information on uranyl surface speciation in the presence of phosphate ligands presented here is novel and provides for the first time in situ spectroscopic evidence of synergistic U-P sorption process leading in the formation of several types of uranyl phosphate sorption species on the surface of illite. These results provide a sound basis for better understanding / prediction of U sorption in the environment, including in clayey formations being considered as long term barriers to radionuclide migration in far field of high level radioactive waste repository

    Ion chromatograph with three‐dimensional printed absorbance detector for indirect ultraviolet absorbance detection of phosphate in effluent and natural waters

    No full text
    The intestinal epithelium, the fastest renewing tissue in human, is a complex tissue hosting multiple cell types with a dynamic and multiparametric microenvironment, making it particularly challenging to recreate in vitro. Convergence of recent advances in cellular biology and microfabrication technologies have led to the development of various bioengineered systems to model and study the intestinal epithelium. Theses microfabricated in vitro models may constitute an alternative to current approaches for studying the fundamental mechanisms governing intestinal homeostasis and pathologies, as well as for in vitro drug screening and testing. Herein, we review the recent advances in bioengineered in vitro intestinal models

    Volume detection based on porous silicon waveguide for CO2 mid-infrared spectroscopy

    No full text
    A mid-infrared (mid-IR) porous silicon (PSi) waveguide gas sensor was fabricated. PSi guiding and confinement layers were prepared by electrochemical anodization. Ridge waveguides were patterned using standard i-line photolithography and reactive ion etching. Due to the open pores, light and gas molecules interact in the inside volume, unlike bulk material in which the interaction takes place with the evanescent part of the light. Propagation losses are measured for a wavelength range spanning from λ = 3.9 to 4.55 ”m with a value of 11.4 dB/cm at λ = 4.28 ”m. The influence of native oxidation and ageing on the propagation losses was investigated. Limit of detection (LoD) of 1000 ppm is obtained with the waveguide sensor at the carbon dioxide (CO2) absorption peak at λ = 4.28 ”m
    corecore