77 research outputs found

    Platelets : their exploitation and elimination

    Get PDF
    Platelets are cytoplasmic fragments present in large numbers within the bloodstream that contain a multitude of proteins. For a long time, platelet function was believed to be limited to the essential functions of haemostasis and thrombosis. However, it has become clear in the last decade that platelets play significant roles in both innate and adaptive immunity, inflammatory responses including leukocyte migration, tissue regeneration and angiogenesis. Parallelling the revelation of the diverse physiological functions of platelets, however, has been the association of exacerbated platelet function with numerous thrombotic and chronic inflammatory diseases. Until our knowledge of platelet biology is more comprehensive, the prevention of platelet-associated pathologies will remain a challenge of inhibiting pathology-associated platelet reactions whilst preserving those essential for normal function. The aims of this thesis, therefore, were to examine in detail the following three platelet-associated biological processes: (i) The role of platelets in tumour cell metastasis, in particular, the kinetics and interrelationship of the pro-metastatic role of platelets and the anti-metastatic role of NK cells, and the relevant contributions to the metastatic process of platelet P-selectin and endothelial P-selectin. (ii) The determinants and mechanisms of antibody-mediated platelet elimination, as seen in the medical condition known as immune thrombocytopenic purpura (ITP), and the role of inhibitory self-recognition systems in this process. (iii) The factors influencing platelet and erythrocyte lifespan by establishing appropriate experimental and analytical methodologies

    A Rapid and Accurate Bioluminescence-Based Migration Assay Permitting Analysis of Tumor Cell/Stromal Cell Interactions

    Get PDF
    Bioluminescent tumor cell lines are used extensively in vivo to monitor tumor growth and metastasis but rarely used in vitro to follow tumor cell behavior. Tumor cell migration is frequently studied in vitro using transwell assays, however, current methods do not permit the co-incubation of tumor cells with different stromal cell types for analysis of the effects of intercellular cross-talk on tumor cell migration. We describe a novel migration assay using bioluminescent tumor cell lines that is rapid, accurate, and permits the study of the effects of tumor cell-stromal cell interactions on tumor cell migratory behavior.This work was supported by the Sarah-Grace Sarcoma Foundation

    Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span

    No full text
    Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11Cshowed a lower rate ofPStranslocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserineexposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia.This work was supported in part by National Health and Medical Research Council Grant GNT1061288. Supported by National Health and Medical Research Council Career Development Fellowship GNT1035858 and by the Ramaciotti Foundation

    Fibrin exposure triggers Ī±IIbĪ²3-independent platelet aggregate formation, ADAM10 activity and glycoprotein VI shedding in a charge-dependent manner

    Get PDF
    Background Collagen and fibrin engagement and activation of glycoprotein (GP) VI induces proteolytic cleavage of the GPVI ectodomain generating shed soluble GPVI (sGPVI). Collagenā€mediated GPVI shedding requires intracellular signalling to release the sGPVI, mediated by A Disintegrin And Metalloproteinase 10 (ADAM10); however, the precise mechanism by which fibrin induces GPVI shedding remains elusive. Plasma sGPVI levels are elevated in patients with coagulopathies, sepsis, or inflammation and can predict onset of sepsis and sepsisā€related mortality; therefore, it is clinically important to understand the mechanisms of GPVI shedding under conditions of minimal collagen exposure. Objectives Our aim was to characterize mechanisms by which fibrinā€GPVI interactions trigger GPVI shedding. Methods Platelet aggregometry, sGPVI ELISA, and an ADAM10 fluorescence resonance energy transfer assay were used to measure fibrinā€mediated platelet responses. Results Fibrin induced Ī±IIbĪ²3ā€independent washed platelet aggregate formation, GPVI shedding, and increased ADAM10 activity, all of which were insensitive to preā€treatment with inhibitors of Src family kinases but were divalent cationā€ and metalloproteinaseā€dependent. In contrast, treatment of washed platelets with other GPVI ligands, collagen, and collagenā€related peptide caused Ī±IIbĪ²3ā€dependent platelet aggregation and GPVI release but did not increase constitutive ADAM10 activity. Conclusions Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrinā€induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrinā€induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.National Health and Medical Research Council of Australia; Australian Research Council; THANZ Science and Education Research Gran

    Heme oxygenase-1 deficiency alters erythroblastic Island formation, steady-state erythropoiesis and red blood cell lifespan in mice

    Get PDF
    Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase- 1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119+-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119+-erythroid cells in the spleen, although Ī±4Ī²1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase- 1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes

    Cohort profile: prescriptions dispensed in the community linked to the national cancer registry in England.

    Get PDF
    PURPOSE: The linked prescriptions cancer registry data resource was set up to extend our understanding of the pathway for patients with cancer past secondary care into the community, to ultimately improve patient outcomes. PARTICIPANTS: The linked prescriptions cancer registry data resource is currently available for April to July 2015, for all patients diagnosed with cancer in England with a dispensed prescription in that time frame.The dispensed prescriptions data are collected by National Health Service (NHS) Prescription Services, and the cancer registry data are processed by Public Health England. All data are routine healthcare data, used for secondary purposes, linked using a pseudonymised version of the patient's NHS number and date of birth.Detailed demographic and clinical information on the type of cancer diagnosed and treatment is collected by the cancer registry. The dispensed prescriptions data contain basic demographic information, geography measures of the dispensed prescription, drug information (quantity, strength and presentation), cost of the drug and the date that the dispensed prescription was submitted to NHS Business Services Authority. FINDINGS TO DATE: Findings include a study of end of life prescribing in the community among patients with cancer, an investigation of repeat prescriptions to derive measures of prior morbidity status in patients with cancer and studies of prescription activity surrounding the date of cancer diagnosis. FUTURE PLANS: This English linked resource could be used for cancer epidemiological studies of diagnostic pathways, health outcomes and inequalities; to establish primary care comorbidity indices and for guideline concordance studies of treatment, particularly hormonal therapy, as a major treatment modality for breast and prostate cancer which has been largely delivered in the community setting for a number of years

    Loss of GPVI and GPIbĪ± contributes to trauma-induced platelet dysfunction in severely injured patients

    Get PDF
    Trauma-induced coagulopathy (TIC) is a complex, multifactorial failure of hemostasis that occurs in 25% of severely injured patients and results in a fourfold higher mortality. However, the role of platelets in this state remains poorly understood. We set out to identify molecular changes that may underpin platelet dysfunction after major injury and to determine how they relate to coagulopathy and outcome. We performed a range of hemostatic and platelet-specific studies in blood samples obtained from critically injured patients within 2 hours of injury and collected prospective data on patient characteristics and clinical outcomes. We observed that, although platelet counts were preserved above critical levels, circulating platelets sampled from trauma patients exhibited a profoundly reduced response to both collagen and the selective glycoprotein VI (GPVI) agonist collagen-related peptide, compared with those from healthy volunteers. These responses correlated closely with overall clot strength and mortality. Surface expression of the collagen receptors GPIbĪ± and GPVI was reduced on circulating platelets in trauma patients, with increased levels of the shed ectodomain fragment of GPVI detectable in plasma. Levels of shed GPVI were highest in patients with more severe injuries and TIC. Collectively, these observations demonstrate that platelets experience a loss of GPVI and GPIbĪ± after severe injury and translate into a reduction in the responsiveness of platelets during active hemorrhage. In turn, they are associated with reduced hemostatic competence and increased mortality. Targeting proteolytic shedding of platelet receptors is a potential therapeutic strategy for maintaining hemostatic competence in bleeding and improving the efficacy of platelet transfusions

    GSTZ1 genotypes correlate with dichloroacetate pharmacokinetics and chronic side effects in multiple myeloma patients in a pilot phase 2 clinical trial

    Get PDF
    Dichloroacetate (DCA) is an investigational drug targeting the glycolytic hallmark of cancer by inhibiting pyruvate dehydrogenase kinases (PDK). It is metabolized by GSTZ1, which has common polymorphisms altering enzyme or promoter activity. GSTZ1 is also irreversibly inactivated by DCA. In the first clinical trial of DCA in a hematological malignancy, DiCAM (DiChloroAcetate in Myeloma), we have examined the relationship between DCA concentrations, GSTZ1 genotype, side effects, and patient response. DiCAM recruited seven myeloma patients in partial remission. DCA was administered orally for 3 months with a loading dose. Pharmacokinetics were performed on day 1 and 8. Trough and peak concentrations of DCA were measured monthly. GSTZ1 genotypes were correlated with drug concentrations, tolerability, and disease outcomes. One patient responded and two patients showed a partial response after one month of DCA treatment, which included the loading dose. The initial halfā€life of DCA was shorter in two patients, correlating with heterozygosity for GSTZ1*A genotype, a high enzyme activity variant. Over 3 months, one patient maintained DCA trough concentrations approximately threefold higher than other patients, which correlated with a low activity promoter genotype (āˆ’1002A, rs7160195) for GSTZ1. This patient displayed the strongest response, but also the strongest neuropathy. Overall, serum concentrations of DCA were sufficient to inhibit the constitutive target PDK2, but unlikely to inhibit targets induced in cancer. Promoter GSTZ1 polymorphisms may be important determinants of DCA concentrations and neuropathy during chronic treatment. Novel dosing regimens may be necessary to achieve effective DCA concentrations in most cancer patients while avoiding neuropathy.This work was supported by The Canberra Hospital Private Practice Trust Fund, Cancer Council ACT Project Grant APP1103848, and the Monaro Committee for Cancer Researc

    Aberrant Dyskerin Expression Is Related to Proliferation and Poor Survival in Endometrial Cancer

    Get PDF
    Dyskerin is a core-component of the telomerase holo-enzyme, which elongates telomeres. Telomerase is involved in endometrial epithelial cell proliferation. Most endometrial cancers (ECs) have high telomerase activity; however, dyskerin expression in human healthy endometrium or in endometrial pathologies has not been investigated yet. We aimed to examine the expression, prognostic relevance, and functional role of dyskerin in human EC. Endometrial samples from a cohort of 175 women were examined with immunohistochemistry, immunoblotting, and qPCR. The EC cells were transfected with Myc-DDK-DKC1 plasmid and the effect of dyskerin overexpression on EC cell proliferation was assessed by flow cytometry. Human endometrium expresses dyskerin (DKC1) and dyskerin protein levels are significantly reduced in ECs when compared with healthy postmenopausal endometrium. Low dyskerin immunoscores were potentially associated with worse outcomes, suggesting a possible prognostic relevance. Cancer Genome Atlas (TCGA) ECs dataset (n = 589) was also interrogated. The TCGA dataset further confirmed changes in DKC1 expression in EC with prognostic significance. Transient dyskerin overexpression had a negative effect on EC cell proliferation. Our data demonstrates a role for dyskerin in normal endometrium for the first time and confirms aberrant expression with possible prognostic relevance in EC. Interventions aimed at modulating dyskerin levels may provide novel therapeutic options in EC

    Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update

    Get PDF
    Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions including case isolation, the closure of schools and universities, banning of mass gatherings and/or public events, and most recently, wide-scale social distancing including local and national lockdowns. In this technical update, we extend a semi-mechanistic Bayesian hierarchical model that infers the impact of these interventions and estimates the number of infections over time. Our methods assume that changes in the reproductive number - a measure of transmission - are an immediate response to these interventions being implemented rather than broader gradual changes in behaviour. Our model estimates these changes by calculating backwards from temporal data on observed to estimate the number of infections and rate of transmission that occurred several weeks prior, allowing for a probabilistic time lag between infection and death. In this update we extend our original model [Flaxman, Mishra, Gandy et al 2020, Report #13, Imperial College London] to include (a) population saturation effects, (b) prior uncertainty on the infection fatality ratio, (c) a more balanced prior on intervention effects and (d) partial pooling of the lockdown intervention covariate. We also (e) included another 3 countries (Greece, the Netherlands and Portugal). The model code is available at https://github.com/ImperialCollegeLondon/covid19model/ We are now reporting the results of our updated model online at https://mrc-ide.github.io/covid19estimates/ We estimated parameters jointly for all M=14 countries in a single hierarchical model. Inference is performed in the probabilistic programming language Stan using an adaptive Hamiltonian Monte Carlo (HMC) sampler
    • ā€¦
    corecore