6 research outputs found

    Noise Correlations in Three-Terminal Diffusive Superconductor-Normal Metal-Superconductor Nanostructures

    Get PDF
    We present measurements of current noise and cross-correlations in three-terminal Superconductor-Normal metal-Superconductor (S-N-S) nanostructures that are potential solid-state entanglers thanks to Andreev reflections at the N-S interfaces. The noise correlation measurements spanned from the regime where electron-electron interactions are relevant to the regime of Incoherent Multiple Andreev Reflection (IMAR). In the latter regime, negative cross-correlations are observed in samples with closely-spaced junctions.Comment: Include Supplemental Materia

    Divergence at low bias and down-mixing of the current noise in a diffusive superconductor-normal metal-superconductor junction

    Get PDF
    We present current noise measurements in a long diffusive superconductor-normal-metal-superconductor junction in the low voltage regime, in which transport can be partially described in terms of coherent multiple Andreev reflections. We show that, when decreasing voltage, the current noise exhibits a strong divergence together with a broad peak. We ascribe this peak to the mixing between the ac- Josephson current and the noise of the junction itself. We show that the junction noise corresponds to the thermal noise of a nonlinear resistor 4kBT=R with R V = I V and no adjustable parameters

    Experimental analysis of the wake dynamics of a modelled wind turbine during yaw manoeuvres

    No full text
    International audienceThis work focuses on the dynamic analysis of a modelled wind turbine wake during yaw manoeuvres. Indeed, in the context of wind farm control, misalignment of wind turbines is envisaged as a solution to reduce wind turbine wake interactions, by skewing the wake trajectory. To optimize the control strategies, the aerodynamic response of the wake to this type of yaw manoeuvres, as well as the global load response of the rotor disc of the downstream wind turbine, must be quantified. As a first approach, the identification of the overall system is performed through wind tunnel experiments, using a rotor model based on the actuator disc concept. A misalignment scenario of the upstream wind turbine model is imposed and the wind turbine wake deflection is dynamically captured and measured by the use of Particle Imaging Velocimetry

    Experimental analysis of the wake dynamics of a modelled wind turbine during yaw manoeuvres

    No full text
    International audienceThis work focuses on the dynamic analysis of a modelled wind turbine wake during yaw manoeuvres. Indeed, in the context of wind farm control, misalignment of wind turbines is envisaged as a solution to reduce wind turbine wake interactions, by skewing the wake trajectory. To optimize the control strategies, the aerodynamic response of the wake to this type of yaw manoeuvres, as well as the global load response of the rotor disc of the downstream wind turbine, must be quantified. As a first approach, the identification of the overall system is performed through wind tunnel experiments, using a rotor model based on the actuator disc concept. A misalignment scenario of the upstream wind turbine model is imposed and the wind turbine wake deflection is dynamically captured and measured by the use of Particle Imaging Velocimetry
    corecore