72 research outputs found
Analysis of Wind Power and Load Data at Multiple Time Scales
In this study we develop and apply new methods of data analysis for high resolution wind power and system load time series, to improve our understanding of how to characterize highly variable wind power output and the correlations between wind power and load. These methods are applied to wind and load data from the ERCOT region, and wind power output from the PJM and NYISO areas. We use a wavelet transform to apply mathematically well-defined operations of smoothing and differencing to the time series data. This approach produces a set of time series of the changes in wind power and load (or ?deltas?), over a range of times scales from a few seconds to approximately one hour. A number of statistical measures of these time series are calculated. We present sample distributions, and devise a method for fitting the empirical distribution shape in the tails. We also evaluate the degree of serial correlation, and linear correlation between wind and load. Our examination of the data shows clearly that the deltas do not follow a Gaussian shape; the distribution is exponential near the center and appears to follow a power law for larger fluctuations. Gaussian distributions are frequently used in modeling studies. These are likely to over-estimate the probability of small to moderate deviations. This in turn may lead to an over-estimation of the additional reserve requirement (hence the cost) for high penetration of wind. The Gaussian assumption provides no meaningful information about the real likelihood of large fluctuations. The possibility of a power law distribution is interesting because it suggests that the distribution shape for of wind power fluctuations may become independent of system size for large enough systems
Recommended from our members
Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study
This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West
Recommended from our members
Modeling National Impacts for the Building America Program
In this paper we present a model to estimate the nationalenergy and economic impacts of the Department of Energy Building Americaprogram. The program goal is to improve energy performance in newresidential construction, by working with builders to design andconstruct energy-efficient homes at minimal cost. The model is anadaptation of the method used to calculate the national energy savingsfor appliance energy efficiency standards. The main difference is thatthe key decision here is not the consumer decision to buy anefficienthouse, but rather the builder decision to offer such a house inthe market. The builder decision is treated by developing a number ofscenarios in which the relative importance of first costs vs. energysavings is varied
Recommended from our members
Statistical Analysis of Baseline Load Models for Non-Residential Buildings
Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it
Recommended from our members
Valuing the Environmental Benefits of Urban WaterConservation
This report documents a project undertaken for theCalifornia Urban Water Conservation Council (the Council) to create a newmethod of accounting for the diverse environmental benefits of raw watersavings. The environmental benefits (EB) model was designed to providewater utilities with a practical tool that they can use to assign amonetary value to the benefits that may accrue from implementing any ofthe Council-recommended Best Management Practices. The model treats onlyenvironmental services associated directly with water, and is intended tocover miscellaneous impacts that are not currently accounted for in anyother cost-benefit analysis
Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4- year- old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh- like lesions on brain imaging. She died shortly after. Her 8- year- old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G- >- A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162807/2/jimd12232.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162807/1/jimd12232_am.pd
Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation
An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances
Recommended from our members
Utility Sector Impacts of Reduced Electricity Demand: Updates to Methodology and Results
- …