1,531 research outputs found

    Graphics standards in high-energy physics

    Get PDF

    Effects of Positive Behavior Intervention and Supports on Teacher Self-Efficacy and Teaching Anxiety

    Get PDF
    Positive Behavior Intervention and Supports (PBIS), for improving behavior and achievement is well established. The impact PBIS has on teaching anxiety and self-efficacy levels is unknown. Research indicates that both attributes affect students’ performance. This study examined how the implementation of PBIS affects teachers’ levels of teaching anxiety and self-efficacy.https://scholarworks.waldenu.edu/archivedposters/1068/thumbnail.jp

    Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats

    Get PDF
    The aim of this work was to study in rats the nasal route for the brain delivery of the vasoactive intestinal peptide (VIP) neuropeptide. After evaluating VIP stability in solutions obtained from nasal washes, the effect of formulation parameters (pH 4-9, 0-1% (w/v) lauroylcarnitine (LC), hypo- or isoosmolality) on the brain uptake of intranasally administered VIP (10(-8)M)/125I-VIP (300,000 cpm/ml) was studied, using an in situ perfusion technique. Brain radioactivity distribution was assessed by quantitative autoradiographic analysis. Results were compared to intravenously administered VIP. With a hypotonic formulation at pH 4 containing 0.1% LC and 1% bovine serum albumin, VIP stability was satisfactory and loss by adsorption was minimal. Using this formulation, around 0.11% of initial radioactivity was found in the brain after 30 min perfusion and was located in the olfactory bulbs, the midbrain and the cerebellum. HPLC analysis of brain and blood extracts demonstrated the presence of intact VIP in brain and its complete degradation in the blood compartment. By intravenous administration, no intact VIP was found either in brain or in blood. In conclusion, intact VIP could be delivered successfully to the brain using the intranasal route for administration

    Diet, cancer, and the lipidome.

    Get PDF
    International audienceThe potential for dietary fat to interfere with the development of breast cancer by delaying its occurrence makes the identification of defined molecules a mandatory step in cancer prevention. In order to circumvent the limitations and/or bias of dietary exposure assessment tools, biomarkers of past lipid intake such as the fatty acid composition of white adipose tissue have been used. When considered separately, candidate fatty acids identified as favorable on the basis of their association with breast cancer risk have usually led to inconsistent results in animal intervention studies. This inconsistency indicates that any approach based on a single fatty acid should be abandoned for an integrated view over the complex lipid interactions which finally determines the lipidome, the lipid profile that is found in individuals. This article presents a reappraisal of the role of the lipid profile through a comprehensive reanalysis of adipose tissue fatty acid composition obtained in patients with benign or malignant breast tumors as well as in experimental animals during dietary interventions. Rather than a single fatty acid, a composite indicator combining elevated monounsaturates and low omega6/omega3 fatty acid ratio was associated with breast cancer protection. This lipidome may become the template for identifying breast cancer risk related to diet, and for designing proper dietary modifications to delay the occurrence of breast cancer, although the universality of the findings cannot be assessed from a single study

    Offset fields in perpendicularly magnetized tunnel junctions

    Full text link
    We study the offset fields affecting the free layer of perpendicularly magnetized tunnel junctions. In extended films, the free layer offset field results from interlayer exchange coupling with the reference layer through the MgO tunnel oxide. The free layer offset field is thus accompanied with a shift of the free layer and reference layer ferromagnetic resonance frequencies. The shifts depend on the mutual orientation of the two magnetizations. The offset field decreases with the resistance area product of the tunnel oxide. Patterning the tunnel junction into an STT-MRAM disk-shaped cell changes substantially the offset field, as the reduction of the lateral dimension comes with the generation of stray fields by the reference and the hard layer. The experimental offset field compares best with the spatial average of the sum of these stray fields, thereby providing guidelines for the offset field engineering.Comment: Special issue of J. Phys. D: Appl. Phys (2019) on STT-MRA

    Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting

    Get PDF
    PURPOSE: To prepare polymeric vesicles and niosomes bearing glucose or transferrin ligands for drug targeting. METHODS: A glucose-palmitoyl glycol chitosan (PGC) conjugate was synthesised and glucose-PGC polymeric vesicles prepared by sonication of glucose-PGC/cholesterol. N-palmitoylglucosamine (NPG) was synthesised and NPG niosomes also prepared by sonication of NPG/ sorbitan monostearate/ cholesterol/ cholesteryl poly-24-oxyethylene ether. These 2 glucose vesicles were incubated with colloidal concanavalin A gold (Con-A gold), washed and visualised by transmission electron microscopy (TEM). Transferrin was also conjugated to the surface of PGC vesicles and the uptake of these vesicles investigated in the A431 cell line (over expressing the transferrin receptor) by fluorescent activated cell sorter analysis. RESULTS: TEM imaging confirmed the presence of glucose units on the surface of PGC polymeric vesicles and NPG niosomes. Transferrin was coupled to PGC vesicles at a level of 0.60+/-0.18 g of transferrin per g polymer. The proportion of FITC-dextran positive A431 cells was 42% (FITC-dextran solution), 74% (plain vesicles) and 90% (transferrin vesicles). CONCLUSIONS: Glucose and transferrin bearing chitosan based vesicles and glucose niosomes have been prepared. Glucose bearing vesicles bind Con-A to their surface. Chitosan based vesicles are taken up by A431 cells and transferrin enhances this uptake

    Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles

    Get PDF
    The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug
    • 

    corecore