62 research outputs found
Non-linear and quantum optics of a type II OPO containing a birefringent element Part 1: Classical operation
We describe theoretically the main characteristics of the steady state regime
of a type II Optical Parametric Oscillator (OPO) containing a birefringent
plate. In such a device the signal and idler waves are at the same time
linearly coupled by the plate and nonlinearly coupled by the
crystal. This mixed coupling allows, in some well-defined range of the control
parameters, a frequency degenerate operation as well as phase locking between
the signal and idler modes. We describe here a complete model taking into
account all possible effects in the system, \emph{i.e.} arbitrary rotation of
the waveplate, non perfect phase matching, ring and linear cavities. This model
is able to explain the detailed features of the experiments performed with this
system.Comment: To be published in EPJ
Compact Source of EPR Entanglement and Squeezing at Very Low Noise Frequencies
We report on the experimental demonstration of strong quadrature EPR
entanglement and squeezing at very low noise sideband frequencies produced by a
single type-II, self-phase-locked, frequency degenerate optical parametric
oscillator below threshold. The generated two-mode squeezed vacuum state is
preserved for noise frequencies as low as 50 kHz. Designing simple setups able
to generate non-classical states of light in the kHz regime is a key challenge
for high sensitivity detection of ultra-weak physical effects such as
gravitational wave or small beam displacement
Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams
We report the first experimental demonstration of conditional preparation of
a non classical state of light in the continuous variable regime. Starting from
a non degenerate OPO which generates above threshold quantum intensity
correlated signal and idler "twin beams", we keep the recorded values of the
signal intensity only when the idler falls inside a band of values narrower
than its standard deviation. By this very simple technique, we generate a
sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of
noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let
Double-lambda microscopic model for entangled light generation by four-wave-mixing
Motivated by recent experiments, we study four-wave-mixing in an atomic
double-{\Lambda} system driven by a far-detuned pump. Using the
Heisenberg-Langevin formalism, and based on the microscopic properties of the
medium, we calculate the classical and quantum properties of seed and conju-
gate beams beyond the linear amplifier approximation. A continuous variable
approach gives us access to relative-intensity noise spectra that can be
directly compared to experiments. Restricting ourselves to the cold-atom
regime, we predict the generation of quantum-correlated beams with a
relative-intensity noise spectrum well below the standard quantum limit (down
to -6 dB). Moreover entanglement between seed and conjugate beams measured by
an inseparability down to 0.25 is expected. This work opens the way to the
generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR
Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate
We have operated a CW triply resonant OPO using a PPLN crystal pumped by a
Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3
micron range. The OPO was operated stably in single mode operation over large
periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS
Non-linear and quantum optics of a type II OPO containing a birefringent element Part 2 : bright entangled beams generation
We describe theoretically the quantum properties of atype-II Optical
Parametric Oscillator containing a birefringent plate which induces a linear
coupling between the orthogonally polarized signal and idler beams and results
in phase locking between these two beams. As in a classical OPO, the signal and
idler waves show large quantum correlations which can be measured
experimentally due to the phase locking between the two beams. We study the
influence of the waveplate on the various criteria characterizing quantum
correlations. We show in particular that the quantum correlations can be
maximized by using optimized quadratures.Comment: to be published in Eur. Phys. J.
Entanglement and squeezing in a two-mode system: theory and experiment
We report on the generation of non separable beams produced via the
interaction of a linearly polarized beam with a cloud of cold cesium atoms
placed in an optical cavity. We convert the squeezing of the two linear
polarization modes into quadrature entanglement and show how to find out the
best entanglement generated in a two-mode system using the inseparability
criterion for continuous variable [Duan et al., Phys. Rev. Lett. 84, 2722
(2000)]. We verify this method experimentally with a direct measurement of the
inseparability using two homodyne detections. We then map this entanglement
into a polarization basis and achieve polarization entanglement.Comment: submitted to J. Opt. B for a Special Issue on Foundations of Quantum
Optic
Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup
A versatile femtosecond ultraviolet (UV) pulse generation, a phase modulation, and a characterization setup for coherent control applications are demonstrated. For high-performance phase control of ultrashort pulses direct in the UV a microelectromechanical-system-based 2D mirror array is applied. Multiple examples for successful phase control of ultrashort UV pulses are given, such as arbitrarily phase tailoring and pulse recompression in open and closed loop schemes. For simple and effective characterization of the generated pulses, a UV autocorrelator based on two-photon absorption in a solar blind photomultiplier is constructed. The effects of space-time coupling on split mirror autocorrelation measurements are addressed and minimized. © 2009 Optical Society of America
- …