62 research outputs found

    Non-linear and quantum optics of a type II OPO containing a birefringent element Part 1: Classical operation

    Full text link
    We describe theoretically the main characteristics of the steady state regime of a type II Optical Parametric Oscillator (OPO) containing a birefringent plate. In such a device the signal and idler waves are at the same time linearly coupled by the plate and nonlinearly coupled by the χ(2)\chi^{(2)} crystal. This mixed coupling allows, in some well-defined range of the control parameters, a frequency degenerate operation as well as phase locking between the signal and idler modes. We describe here a complete model taking into account all possible effects in the system, \emph{i.e.} arbitrary rotation of the waveplate, non perfect phase matching, ring and linear cavities. This model is able to explain the detailed features of the experiments performed with this system.Comment: To be published in EPJ

    Compact Source of EPR Entanglement and Squeezing at Very Low Noise Frequencies

    Get PDF
    We report on the experimental demonstration of strong quadrature EPR entanglement and squeezing at very low noise sideband frequencies produced by a single type-II, self-phase-locked, frequency degenerate optical parametric oscillator below threshold. The generated two-mode squeezed vacuum state is preserved for noise frequencies as low as 50 kHz. Designing simple setups able to generate non-classical states of light in the kHz regime is a key challenge for high sensitivity detection of ultra-weak physical effects such as gravitational wave or small beam displacement

    Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams

    Full text link
    We report the first experimental demonstration of conditional preparation of a non classical state of light in the continuous variable regime. Starting from a non degenerate OPO which generates above threshold quantum intensity correlated signal and idler "twin beams", we keep the recorded values of the signal intensity only when the idler falls inside a band of values narrower than its standard deviation. By this very simple technique, we generate a sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let

    Double-lambda microscopic model for entangled light generation by four-wave-mixing

    Get PDF
    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR

    Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate

    Get PDF
    We have operated a CW triply resonant OPO using a PPLN crystal pumped by a Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3 micron range. The OPO was operated stably in single mode operation over large periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS

    Non-linear and quantum optics of a type II OPO containing a birefringent element Part 2 : bright entangled beams generation

    Full text link
    We describe theoretically the quantum properties of atype-II Optical Parametric Oscillator containing a birefringent plate which induces a linear coupling between the orthogonally polarized signal and idler beams and results in phase locking between these two beams. As in a classical OPO, the signal and idler waves show large quantum correlations which can be measured experimentally due to the phase locking between the two beams. We study the influence of the waveplate on the various criteria characterizing quantum correlations. We show in particular that the quantum correlations can be maximized by using optimized quadratures.Comment: to be published in Eur. Phys. J.

    Entanglement and squeezing in a two-mode system: theory and experiment

    Full text link
    We report on the generation of non separable beams produced via the interaction of a linearly polarized beam with a cloud of cold cesium atoms placed in an optical cavity. We convert the squeezing of the two linear polarization modes into quadrature entanglement and show how to find out the best entanglement generated in a two-mode system using the inseparability criterion for continuous variable [Duan et al., Phys. Rev. Lett. 84, 2722 (2000)]. We verify this method experimentally with a direct measurement of the inseparability using two homodyne detections. We then map this entanglement into a polarization basis and achieve polarization entanglement.Comment: submitted to J. Opt. B for a Special Issue on Foundations of Quantum Optic

    Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup

    Get PDF
    A versatile femtosecond ultraviolet (UV) pulse generation, a phase modulation, and a characterization setup for coherent control applications are demonstrated. For high-performance phase control of ultrashort pulses direct in the UV a microelectromechanical-system-based 2D mirror array is applied. Multiple examples for successful phase control of ultrashort UV pulses are given, such as arbitrarily phase tailoring and pulse recompression in open and closed loop schemes. For simple and effective characterization of the generated pulses, a UV autocorrelator based on two-photon absorption in a solar blind photomultiplier is constructed. The effects of space-time coupling on split mirror autocorrelation measurements are addressed and minimized. © 2009 Optical Society of America
    • …
    corecore