2,837 research outputs found

    The NASA-Lewis/ERDA solar heating and cooling technology program

    Get PDF
    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions

    Luminosity Distributions within Rich Clusters - III: A comparative study of seven Abell/ACO clusters

    Full text link
    We recover the luminosity distributions over a wide range of absolute magnitude (-24.5 < M_{R} < -16.5) for a sample of seven rich southern galaxy clusters. We find a large variation in the ratio of dwarf to giant galaxies, DGR: 0.8\le DGR DGR \le 3.1. This variation is shown to be inconsistent with a ubiquitous cluster luminosity function. The DGR shows a smaller variation from cluster to cluster in the inner regions (r \ls 0.56 Mpc). Outside these regions we find the DGR to be strongly anti-correlated with the mean local projected galaxy density with the DGR increasing towards lower densities. In addition the DGR in the outer regions shows some correlation with Bautz-Morgan type. Radial analysis of the clusters indicate that the dwarf galaxies are less centrally clustered than the giants and form a significant halo around clusters. We conclude that measurements of the total cluster luminosity distribution based on the inner core alone are likely to be severe underestimates of the dwarf component, the integrated cluster luminosity and the contribution of galaxy masses to the cluster's total mass. Further work is required to quantify this. The observational evidence that the unrelaxed, lower density outer regions of clusters are dwarf-rich, adds credence to the recent evidence and conjecture that the field is a predominantly dwarf rich environment and that the dwarf galaxies are under-represented in measures of the local field luminosity function.Comment: 31 pages including 11 figures. Also available from http://star-www.st-and.ac.uk/~spd3/bib.htm

    Luminosity Distributions within Rich Clusters - II: Demonstration and Verification via Simulation

    Full text link
    We present detailed simulations of long exposure CCD images. The simulations are used to explore the validity of the statistical method for reconstructing the luminosity distribution of galaxies within a rich cluster i.e. by the subtraction of field number-counts from those of a sight-line through the cluster. In particular we use the simulations to establish the reliability of our observational data presented in Paper 3. Based on our intended CCD field-of-view (6.5 by 6.5 arcmins) and a 1-sigma detection limit of 26 mags per sq arcsecond, we conclude that the luminosity distribution can be robustly determined over a wide range of absolute magnitude (-23 < M_{R} < -16) provided: (a) the cluster has an Abell richness 1.5 or greater, (b) the cluster's redshift lies in the range 0.1 < z < 0.3, (c) the seeing is better than FWHM 1.25'' and (d) the photometric zero points are accurate to within Delta m = \pm 0.12. If these conditions are not met then the recovered luminosity distribution is unreliable and potentially grossly miss-leading. Finally although the method clearly has limitations, within these limitations the technique represents an extremely promising probe of galaxy evolution and environmental dependencies.Comment: 24 pages, 8 figures accepted for publication in MNRAS also available from http://star-www.st-and.ac.uk/~spd3/bib.htm

    A Search for Low Surface Brightness Structure Around Compact Narrow Emission Line Galaxies

    Full text link
    As the most extreme members of the rapidly evolving faint blue galaxy population at intermediate redshift, the compact narrow emission line galaxies (CNELGs) are intrinsically luminous (-22 < M_B < -18) with narrow emission linewidths (30 < \sigma < 125 km/s). Their nature is heavily debated: they may be low-mass starbursting galaxies that will fade to present-day dwarf galaxies or bursts of star formation temporarily dominating the flux of more massive galaxies, possibly related to in situ bulge formation or the formation of cores of galaxies. We present deep, high-quality (~0.6 - 0.8 arcsec) images with CFHT of 27 CNELGs. One galaxy shows clear evidence for a tidal tail; the others are not unambiguously embedded in galactic disks. Approximately 55% of the CNELGS have sizes consistent with local dwarfs of small-to-intermediate sizes, while 45% have sizes consistent with large dwarfs or disks galaxies. At least 4 CNELGs cannot harbor substantial underlying disk material; they are low-luminosity galaxies at the present epoch (M_B > -18). Conversely, 15 are not blue enough to fade to low-luminosity dwarfs (M_B > -15.2). The majority of the CNELGs are consistent with progenitors of intermediate-luminosity dwarfs and low-luminosity spiral galaxies with small disks. CNELGs are a heterogeneous progenitor population with significant fractions (up to 44%) capable of fading into today's faint dwarfs (M_B > -15.2), while 15 to 85% may only experience an apparently extremely compact CNELG phase at intermediate redshift but remain more luminous galaxies at the present epoch.Comment: 16 pages, 14 figures, emulateapj, published in Ap

    Spectroscopic evolution of dusty starburst galaxies

    Get PDF
    By using a one-zone chemical and spectrophotometric evolution model of a disk galaxy undergoing a dusty starburst, we investigate, numerically, the optical spectroscopic properties in order to explore galaxy evolution in distant clusters. We adopt an assumption that the degree of dust extinction (represented by AVA_V) depends on the ages of starburst populations in such a way that younger stars have larger AVA_V (originally referred to as selective dust extinction by Poggianti & Wu 2000). In particular, we investigate how the time evolution of the equivalent widths of [OII]λ\lambda3727 and Hδ\delta is controlled by the adopted age dependence. This leads to three main results: (1) If a young stellar population (with the age of ∼\sim 10610^6 yr) is more heavily obscured by dust than an old one (>> 10810^8 yr), the galaxy can show an ``e(a)'' spectrum characterized by strong Hδ\delta absorption and relatively modest [OII] emission. (2) A dusty starburst galaxy with an e(a) spectrum can evolve into a poststarburst galaxy with an a+k (or k+a) spectrum 0.2 Gyr after the starburst and then into a passive one with a k-type spectrum 1 Gyr after the starburst. This result clearly demonstrates an evolutionary link between galaxies with different spectral classes (i.e., e(b), e(a), a+k, k+a, and k). (3) A dusty starburst galaxy can show an a+k or k+a spectrum even in the dusty starburst phase if the age-dependence of dust extinction is rather weak, i.e., if young starburst populations with different ages (≤\le 10710^7 yr) are uniformly obscured by dust.Comment: 27 pages 12 figures,2001,ApJ,in pres

    On the Stellar Kinematics and Mass of the Virgo Ultra-Diffuse Galaxy VCC 1287

    Get PDF
    Here, we present a kinematical analysis of the Virgo cluster ultra-diffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287's association both with the Virgo cluster and its globular cluster (GC) system, measuring a recessional velocity of $1116 \pm 2\ \mathrm{km\ s^{-1}}.Wemeasureastellarvelocitydispersion(. We measure a stellar velocity dispersion (19 \pm 6\ \mathrm{km\ s^{-1}})andinferbothadynamicalmass() and infer both a dynamical mass (1.11^{+0.81}_{-0.81} \times 10^{9} \ \mathrm{M_{\odot}})andmasstolightratio() and mass to light ratio (13^{+11}_{-11}$) within the half light radius (4.4 kpc). This places VCC 1287 slightly above the well established relation for normal galaxies, with a higher mass to light ratio for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number -- dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive halos and a failed galaxy origin for at least some UDGs.Comment: 13 pages, 10 figures with an additional 5 pages and 5 figures in appendices. Accepted for publication in MNRAS. v2: with small updates from publication formatting and a minor plotting fix for Fig. 1

    Radial Color Gradients in K+A Galaxies in Distant Clusters of Galaxies

    Get PDF
    Galaxies in rich clusters with z ≳\gtrsim 0.3 are observed to have a higher fraction of photometrically blue galaxies than their nearby counterparts. This raises the important question of what environmental effects can cause the termination of star formation between z ≈\approx 0.3 and the present. The star formation may be truncated due to ram-pressure stripping, or the gas in the disk may be depleted by an episode of star formation caused by some external perturbation. To help resolve this issue, surface photometry was carried out for a total of 70 early-type galaxies in the cluster Cl1358+62, at z ∼\sim 0.33, using two-color images from the Hubble Archive. The galaxies were divided into two categories based on spectroscopic criteria: 24 are type K+A (e.g., strong Balmer lines, with no visible emission lines), while the remaining 46 are in the control sample with normal spectra. Radial color profiles were produced to see if the K+A galaxies show bluer nuclei in relation to their surrounding disks. Specifically, a linear gradient was fit to the radial color profile of each galaxy. We find that the K+A galaxies on average tend to have slightly bluer gradients towards the center than the normals. A Kolmogorov-Smirnov two-sample test has been applied to the two sets of color gradients. The result of the test indicates that there is only a ∼\sim2% probability that the K+A and normal samples are drawn from the same parent distribution. There is a possible complication from a trend in the apparent magnitude vs. color gradient relation, but overall our results favor the centralized star formation scenario as an important process in the evolution of galaxies in dense clusters.Comment: 16 pages, 12 figures, accepted for publication in A
    • …
    corecore