249 research outputs found

    Belief Tree Search for Active Object Recognition

    Full text link
    Active Object Recognition (AOR) has been approached as an unsupervised learning problem, in which optimal trajectories for object inspection are not known and are to be discovered by reducing label uncertainty measures or training with reinforcement learning. Such approaches have no guarantees of the quality of their solution. In this paper, we treat AOR as a Partially Observable Markov Decision Process (POMDP) and find near-optimal policies on training data using Belief Tree Search (BTS) on the corresponding belief Markov Decision Process (MDP). AOR then reduces to the problem of knowledge transfer from near-optimal policies on training set to the test set. We train a Long Short Term Memory (LSTM) network to predict the best next action on the training set rollouts. We sho that the proposed AOR method generalizes well to novel views of familiar objects and also to novel objects. We compare this supervised scheme against guided policy search, and find that the LSTM network reaches higher recognition accuracy compared to the guided policy method. We further look into optimizing the observation function to increase the total collected reward of optimal policy. In AOR, the observation function is known only approximately. We propose a gradient-based method update to this approximate observation function to increase the total reward of any policy. We show that by optimizing the observation function and retraining the supervised LSTM network, the AOR performance on the test set improves significantly.Comment: IROS 201

    Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration

    Full text link
    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al.(2014) recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing (The Model, TM). Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces that generalizes to objects that must be individuated. Interestingly, when the task of the network is basic level categorization, no increase in the correlation between domains is observed. Hence, our model predicts that it is the type of experience that matters and that the source of the correlation is in the fusiform face area, rather than in cortical areas that subserve basic level categorization. This result is consistent with our previous modeling elucidating why the FFA is recruited for novel domains of expertise (Tong et al., 2008)

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain
    • …
    corecore