32 research outputs found

    Synthesis of marmycin A and investigation into its cellular activity

    Get PDF
    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications

    Gene Expression Enabling Synthetic Diversification of Natural Products: Chemogenetic Generation of Pacidamycin Analogs

    No full text
    Introduction of prnA, the halogenase gene from pyrrolnitrin biosynthesis, into Streptomyces coeruleorubidus resulted in efficient in situ chlorination of the uridyl peptide antibotic pacidamycin. The installed chlorine provided a selectably functionalizable handle enabling synthetic modification of the natural product using mild cross-coupling conditions in crude aqueous extracts of the culture broth
    corecore