1 research outputs found

    The Role of Surface Hydroxylation, Lattice Vacancies and Bond Covalency in the Electrochemical Oxidation of Water (OER) on Ni-Depleted Iridium Oxide Catalysts

    No full text
    The usage of iridium as an oxygen-evolution-reaction (OER) electrocatalyst requires very high atom efficiencies paired with high activity and stability. Our efforts during the past 6 years in the Priority Program 1613 funded by the Deutsche Forschungsgemeinschaft (DFG) were focused to mitigate the molecular origin of kinetic overpotentials of Ir-based OER catalysts and to design new materials to achieve that Ir-based catalysts are more atom and energy efficient, as well as stable. Approaches involved are: (1) use of bimetallic mixed metal oxide materials where Ir is combined with cheaper transition metals as starting materials, (2) use of dealloying concepts of nanometer sized core-shell particle with a thin noble metal oxide shell combined with a hollow or cheap transition metal-rich alloy core, and (3) use of corrosion-resistant high-surface-area oxide support materials. In this mini review, we have highlighted selected advances in our understanding of Ir–Ni bimetallic oxide electrocatalysts for the OER in acidic environments
    corecore