4 research outputs found

    Impact of COVID Status and Blood Group on Complications in Patients in Hemorrhagic Shock

    Get PDF
    OBJECTIVE: Among critically injured patients of various blood groups, we sought to compare survival and complication rates between COVID-19-positive and COVID-19-negative cohorts. BACKGROUND: SARS-CoV-2 infections have been shown to cause endothelial injury and dysfunctional coagulation. We hypothesized that, among patients with trauma in hemorrhagic shock, COVID-19-positive status would be associated with increased mortality and inpatient complications. As a secondary hypothesis, we suspected group O patients with COVID-19 would experience fewer complications than non-group O patients with COVID-19. METHODS: We evaluated all trauma patients admitted 4/2020-7/2020. Patients 16 years or older were included if they presented in hemorrhagic shock and received emergency release blood products. Patients were dichotomized by COVID-19 testing and then divided by blood groups. RESULTS: 3281 patients with trauma were evaluated, and 417 met criteria for analysis. Seven percent (29) of patients were COVID-19 positive; 388 were COVID-19 negative. COVID-19-positive patients experienced higher complication rates than the COVID-19-negative cohort, including acute kidney injury, pneumonia, sepsis, venous thromboembolism, and systemic inflammatory response syndrome. Univariate analysis by blood groups demonstrated that survival for COVID-19-positive group O patients was similar to that of COVID-19-negative patients (79 vs 78%). However, COVID-19-positive non-group O patients had a significantly lower survival (38%). Controlling for age, sex and Injury Severity Score, COVID-19-positive patients had a greater than 70% decreased odds of survival (OR 0.28, 95% CI 0.09 to 0.81; p=0.019). CONCLUSIONS: COVID-19 status is associated with increased major complications and 70% decreased odds of survival in this group of patients with trauma. However, among patients with COVID-19, blood group O was associated with twofold increased survival over other blood groups. This survival rate was similar to that of patients without COVID-19

    Influence of TRPM4 rs8104571 Genotype on Intracranial Pressure and Outcomes in African Americans With Traumatic Brain Injury

    Get PDF
    The TRPM4 gene codes for a membrane ion channel subunit related to inflammation in the central nervous system. Recent investigation has identified an association between TRPM4 single nucleotide polymorphisms (SNPs) rs8104571 and rs150391806 and increased intracranial (ICP) pressure following traumatic brain injury (TBI). We assessed the influence of these genotypes on clinical outcomes and ICP in TBI patients. We included 292 trauma patients with TBI. DNA extraction and real-time PCR were used for TRPM4 rs8104571 and rs150391806 allele discrimination. Five participants were determined to have the rs8104571 homozygous variant genotype, and 20 participants were identified as heterozygotes; 24 of these 25 participants were African American. No participants had rs150391806 variant alleles, preventing further analysis of this SNP. Genotypes containing the rs8104571 variant allele were associated with decreased Glasgow outcome scale-extended (GOSE) score (P = 0.0231), which was also consistent within our African-American subpopulation (P = 0.0324). Regression analysis identified an association between rs8104571 variant homozygotes and mortality within our overall population (P = 0.0230) and among African Americans (P = 0.0244). Participants with rs8104571 variant genotypes exhibited an overall increase in ICP (P = 0.0077), although a greater frequency of ICP measurements \u3e 25 mmHg was observed in wild-type participants (P =  \u3c 0.0001). We report an association between the TRPM4 rs8104571 variant allele and poor outcomes following TBI. These findings can potentially be translated into a precision medicine approach for African Americans following TBI utilizing TRPM4-specific pharmaceutical interventions. Validation through larger cohorts is warranted

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Impact of COVID status and blood group on complications in patients in hemorrhagic shock

    No full text
    Objective Among critically injured patients of various blood groups, we sought to compare survival and complication rates between COVID-19-positive and COVID-19-negative cohorts.Background SARS-CoV-2 infections have been shown to cause endothelial injury and dysfunctional coagulation. We hypothesized that, among patients with trauma in hemorrhagic shock, COVID-19-positive status would be associated with increased mortality and inpatient complications. As a secondary hypothesis, we suspected group O patients with COVID-19 would experience fewer complications than non-group O patients with COVID-19.Methods We evaluated all trauma patients admitted 4/2020–7/2020. Patients 16 years or older were included if they presented in hemorrhagic shock and received emergency release blood products. Patients were dichotomized by COVID-19 testing and then divided by blood groups.Results 3281 patients with trauma were evaluated, and 417 met criteria for analysis. Seven percent (29) of patients were COVID-19 positive; 388 were COVID-19 negative. COVID-19-positive patients experienced higher complication rates than the COVID-19-negative cohort, including acute kidney injury, pneumonia, sepsis, venous thromboembolism, and systemic inflammatory response syndrome. Univariate analysis by blood groups demonstrated that survival for COVID-19-positive group O patients was similar to that of COVID-19-negative patients (79 vs 78%). However, COVID-19-positive non-group O patients had a significantly lower survival (38%). Controlling for age, sex and Injury Severity Score, COVID-19-positive patients had a greater than 70% decreased odds of survival (OR 0.28, 95% CI 0.09 to 0.81; p=0.019).Conclusions COVID-19 status is associated with increased major complications and 70% decreased odds of survival in this group of patients with trauma. However, among patients with COVID-19, blood group O was associated with twofold increased survival over other blood groups. This survival rate was similar to that of patients without COVID-19
    corecore