106 research outputs found

    Facilitating Knowledge Sharing and Analysis in EnergyInformatics with the Ontology for Energy Investigations (OEI)

    Get PDF
    Just as the other informatics-related domains (e.g., Bioinformatics) have discovered in recent years, the ever-growing domain of Energy Informatics (EI) can benefit from the use of ontologies, formalized, domain-specific taxonomies or vocabularies that are shared by a community of users. In this paper, an overview of the Ontology for Energy Investigations (OEI), an ontology that extends a subset of the well-conceived and heavily-researched Ontology for Biomedical Investigations (OBI), is provided as well as a motivating example demonstrating how the use of a formal ontology for the EI domain can facilitate correct and consistent knowledge sharing and the multi-level analysis of its data and scientific investigations

    Towards a Cloud Infrastructure for Energy Informatics

    Get PDF
    The development of cloud computing has achieved the goal of computing as a service, abstracting the resource as a cloud. This service has extended to include not only computation but its associated storage and communication components as well. The smart grid hopes to integrate the dynamics of distributed generation and demand. If the computational requirements of these demands are as dynamic as the phenomena they seek to control, then the cloud computing model provides an appropriately flexible platform for smart grid computing. This paper evaluates the Cloud for Energy Informatics (CEI), a computational-control abstraction that provides flexible and efficient computational resources on-demand as defined by the smart grid. We focus on how the CEI addresses performance and efficiency measures of smart grid related computation such as latency, bandwidth, storage and compute cycles. We compare CEI with traditional approaches using simulation to quantify the resource savings, efficiency and reliability gains from switching to a CEI model

    Open questions on the physical chemistry of aerosols

    Get PDF

    Measurements of the imaginary component of the refractive index of weakly absorbing single aerosol particles

    Get PDF
    The interaction of atmospheric aerosols with radiation remains a significant source of uncertainty in modeling radiative forcing. Laboratory measurements of the microphysical properties of atmospherically relevant particles is one approach to reduce this uncertainty. We report a new method to investigate light absorption by a single aerosol particle, inferring changes in the imaginary part of the refractive index with a change in environmental conditions (e.g., relative humidity) and inferring the size dependence of the optical extinction cross section. More specifically, we present measurements of the response of single aerosol particles to near-infrared (NIR) laser-induced heating at a wavelength of 1520 nm. Particles were composed of aqueous NaCl or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and were studied over ranges in relative humidity (40–85%), particle radius (1–2.2 μm), and NIR laser power. The ensuing size change and real component of the refractive index were extracted from measurements of the angular variation in elastically scattered light. From the heating-induced size change at varying NIR beam intensities, we retrieved the change in the imaginary component of the refractive index. In addition, cavity ring-down spectroscopy measurements monitored the change in extinction cross section with modulation of the heating laser power

    A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Get PDF
    Abstract. Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH4)2SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm) and relative humidity (from 100 % to the efflorescence value of the salt). The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol. </jats:p
    • …
    corecore