423 research outputs found

    Inhibition of vaccinia virus L1 N-myristoylation by the host N-myristoyltransferase inhibitor IMP-1088 generates non-infectious virions defective in cell entry

    Get PDF
    We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors

    Cell genesis and dendritic plasticity: a neuroplastic pas de deux in the onset and remission from depression

    Get PDF
    Brain neuroplasticity is increasingly considered to be an important component of both the pathology and treatment of depressive spectrum disorders. Recent studies shed light on the relevance of hippocampal cell genesis and cortico-limbic dendritic plasticity for the development and remission from depressive-like behavior. However, the neurobiological significance of neuroplastic phenomena in this context is still controversial. Here we summarize recent developments in this topic and propose an integrative interpretation of data gathered so far

    Relaxin: Review of Biology and Potential Role in Treating Heart Failure

    Get PDF
    Relaxin is a naturally occurring human peptide initially identified as a reproductive hormone. More recently, relaxin has been shown to play a key role in the maternal hemodynamic and renal adjustments that accommodate pregnancy. An understanding of these physiologic effects has led to the evaluation of relaxin as a pharmacologic agent for the treatment of patients with acute heart failure. Preliminary results have been encouraging. In addition, the other known biologic properties of relaxin, including anti-inflammatory effects, extracellular matrix remodeling effects, and angiogenic and anti-ischemic effects, all may play a role in potential benefits of relaxin therapy. Ongoing, large-scale clinical testing will provide additional insights into the potential role of relaxin in the treatment of heart failure

    Cell Cycle Heterogeneity Can Generate Robust Cell Type Proportioning

    Get PDF
    Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Assessment of trabecular bone score, an index of bone microarchitecture, in HIV positive and HIV negative persons within the HIV UPBEAT cohort

    Get PDF
    Introduction Increased prevalence of low bone mineral density (BMD) and increased fracture incidence are observed in persons living with HIV (PLWH). The trabecular bone score (TBS) is a novel index of bone microarchitecture which improves fracture prediction independent of BMD. Methods The HIV UPBEAT study is a single centre, prospective cohort study that enrolled subjects with and without HIV from similar sociodemographic backgrounds for annual assessments of bone health. TBS was derived from lumbar spine (LS) dual-energy X-ray absorptiometry images. Univariate and multivariable linear regression was used to assess relationships between baseline TBS, BMD, sociodemographic and clinical factors. Results 463 subjects (201 HIV positive) were included; PLWH were younger and more likely male, of non-African ethnicity and current smokers. HIV was associated with a mean reduction of 0.037 [-0.060, -0.013] (p = 0.002) in TBS. Lower TBS was also associated with male gender, non-African ethnicity, current smoking status and lower LS BMD. HIV remained associated with lower TBS after adjustment for LS BMD, age, gender and ethnicity. However, adjustment for current smoking significantly attenuated the association between HIV and TBS, with further adjustment for higher bone turnover markers largely explaining any residual association. Among the sub-group of PLWH, exposure to protease inhibitors and lower nadir CD4+ T-cell counts were both predictors of lower TBS. Conclusions PLWH have lower TBS independent of LS BMD. However, this is largely explained by higher current smoking rates and higher bone turnover in those with HIV. Exposure to PI, but not tenofovir disproxil fumarate, also contributed to lower TBS in those with HIV

    Vacuolar (lysosomal) trehalase of Saccharomyces cerevisiae

    Full text link
    In the yeast Saccharomyces cerevisiae the PEP4 gene product, protease A, is responsible for activating all soluble vacuolar (lysosomal) enzymes. These vacuolar enzymes remain inactive in pep4 mutants. Vacuolar trehalase activity was diminished in such mutants as well. This suggests that the vacuolar (lysosomal) trehalase is processed in a manner similar to other vacuolar enzymes in S. cerevisiae .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41331/1/284_2005_Article_BF01589375.pd

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)
    • …
    corecore