5,385 research outputs found

    Surgical fidelity: comparing the microscope and the endoscope

    Get PDF
    pre-printBackground: Both the microscope and the endoscope are widely used as visualization tools in neurosurgery; however, surgical dexterity when operating with endoscopic visual control may differ. The aim of this study was to compare the surgical fidelity when using each of these visualization tools. Methods: Junior residents and expert surgeons performed standardized motor tasks under microscopic and endoscopic visualization. Demerits for inaccuracy and time needed to complete the tasks were used to compare the surgeons' performance with the microscope and the endoscope. The participants also performed a motor task under direct vision using different instruments to evaluate whether the shape of the instrument had any impact on the surgical fidelity. Results: For the junior residents, the number of demerits accrued was lower with the microscope than with the endoscope, and the time needed to complete the tasks was also lower with the microscope. There was no difference in the number of demerits between the microscopic and the endoscopic experts, but the microscopic expert completed the task in a shorter time. There was no difference in demerits or performance time when comparing a short, straight instrument and a longer, bayoneted one. Conclusion: For junior residents, surgical fidelity is higher with the microscope than with the endoscope. This difference vanishes with experience, but a slower speed of execution is observed with endoscopic visualization, both in junior and expert surgeons

    Strengthening Indigenous Social Work in the Academy

    Get PDF
    This paper provides an account of the development of an Indigenous Social Work program in Sudbury, Ontario and how it was conceived, developed and implemented. It describes the transformational approaches that Aboriginal faculty, communities and academic allies engaged in to create a rightful space for Indigenous social work in mainstream academia. In its 25th year, this program has provided many transformational opportunities for students, faculty and Aboriginal communities. Incorporating resistance and proactive momentum, the program has become pivotal in expanding the visibility and legitimacy for Indigenous social work in practice, theory, research and pedagogies. This program is an example of how community-faculty collaborations can sustain a robust Indigenous social work program

    Associations of region-specific foot pain and foot biomechanics: the framingham foot study

    Get PDF
    BACKGROUND. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. METHODS. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. RESULTS. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. CONCLUSIONS. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain

    Collective Excitations, NMR, and Phase Transitions in Skyrme Crystals

    Full text link
    At Landau level filling factors near nu =1, quantum Hall ferromagnets form a Skyrme crystal state with quasi-long-range translational and non-collinear magnetic order. We develop an effective low energy theory which explains the presence in these systems of magnetic excitations at low energies below the Larmor gap (Delta) and which predicts a dramatic enhancement of the nuclear spin relaxation rate by a factor of 1000. The effective theory predicts a rich set of quantum and classical phase transitions. Based in part on accurate time-dependent Hartree-Fock calculations of the ordered state collective excitation spectrum, we discuss aspects of the T-nu-Delta crystal phase diagram.Comment: 4 pages REVTEX file and 3 postscript figure

    Photoassociative spectroscopy at long range in ultracold strontium

    Get PDF
    We report photoassociative spectroscopy of 88^{88}Sr2_2 in a magneto-optical trap operating on the 1S03P1{^1S_0}\to{^3P_1} intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1S01P1{^1S_0}\to{^1P_1} atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1{^1P_1} atomic lifetime (τ=5.22±0.03\tau=5.22 \pm 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.Comment: 4 pages, 4 figures, submitte

    Numerical Investigation on Asymmetric Bilayer System at Integer Filling Factor

    Full text link
    Deformation of the easy-axis ferromagnetic state in asymmetric bilayer systems are investigated numerically. Using the exact diagonalization the easy-axis to easy-plane ferromagnetic transition at total filling factor 3 or 4 is investigated. At still higher filling, novel stripe state in which stripes are aligned in the vertical direction occurs. The Hartree-Fock energies of relevant ordered states are calculated and compared.Comment: 4 pages, 6 figures, Proceedings of EP2DS-15, to appear in Physica

    Phases of the 2D Hubbard model at low doping

    Full text link
    We show that the planar spiral phase of the 2D Hubbard model at low doping, x, is unstable towards a noncoplanar spin configuration. The novel equilibrium state we found at low doping is incommensurate with the inverse pitch of the spiral varying as x^(1/2), but nevertheless has a dominant peak in the susceptibility at (\pi,\pi). Relevance to the NMR and neutron scattering experiments in La_2-xSr_xCuO_4 is disccussed.Comment: 12 pages, emtex v.3.

    Correlations of Globular Cluster Properties: Their Interpretations and Uses

    Get PDF
    Correlations among the independently measured physical properties of globular clusters (GCs) can provide powerful tests for theoretical models and new insights into their dynamics, formation, and evolution. We review briefly some of the previous work, and present preliminary results from a comparative study of GC correlations in the Local Group galaxies. The results so far indicate that these diverse GC systems follow the same fundamental correlations, suggesting a commonality of formative and evolutionary processes which produce them.Comment: An invited review, to appear in "New Horizons in Globular Cluster Astronomy", eds. G. Piotto, G. Meylan, S.G. Djorgovski, and M. Riello, ASPCS, in press (2003). Latex file, 8 pages, 5 eps figures, style files include

    A Magnetically Torqued Disk Model for Be Stars

    Full text link
    Despite extensive study, the mechanisms by which Be star disks acquire high densities and angular momentum while displaying variability on many time scales are still far from clear. In this paper, we discuss how magnetic torquing may help explain disk formation with the observed quasi-Keplerian (as opposed to expanding) velocity structure and their variability. We focus on the effects of the rapid rotation of Be stars, considering the regime where centrifugal forces provide the dominant radial support of the disk material. Using a kinematic description of the angular velocity, vphi(r), in the disk and a parametric model of an aligned field with a strength B(r) we develop analytic expressions for the disk properties that allow us to estimate the stellar surface field strength necessary to create such a disk for a range of stars on the main-sequence. The model explains why disks are most common for main-sequence stars at about spectral class B2 V. The earlier type stars with very fast and high density winds would require unacceptably strong surface fields (> 10^3 Gauss) to form torqued disks, while the late B stars (with their low mass loss rates) tend to form disks that produce only small fluxes in the dominant Be diagnostics. For stars at B2 V the average surface field required is about 300 Gauss. The predicted disks provide an intrinsic polarization and a flux at Halpha comparable to observations. We also discuss whether the effect on field containment of the time dependent accumulation of matter in the flux tubes/disk can help explain some of the observed variability of Be star disks.Comment: ApJ, in press. 46 pages, 12 figure
    corecore