36 research outputs found
Recommended from our members
Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE: Insights From the PROSPECT Study.
OBJECTIVES: This study sought to determine if plaque structural stress (PSS) and other plaque stress parameters are increased in plaques that cause future major adverse cardiovascular event(s) (MACE) and if incorporating these parameters improves predictive capability of intravascular ultrasonography (IVUS). BACKGROUND: Less than 10% of coronary plaques identified as high-risk by intravascular imaging result in subsequent MACE. Thus, more specific measurements of plaque vulnerability are required for effective risk stratification. METHODS: Propensity score matching in the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study plaque cohort resulted in 35 nonculprit lesions (NCL) associated with future MACE and 66 matched NCL that remained clinically silent. PSS was calculated by finite element analysis as the mechanical loading within the plaque structure in the periluminal region. RESULTS: PSS was increased in the minimal luminal area (MLA) regions of NCL MACE versus no MACE plaques for all plaques (PSS: 112.1 ± 5.5 kPa vs. 90.4 ± 3.3 kPa, respectively; p = 0.001) and virtual histology thin-cap fibroatheromas (VH-TCFAs) (PSS: 119.2 ± 6.6 kPa vs. 95.8 ± 5.0 kPa, respectively; p = 0.005). However, PSS was heterogeneous over short segments, and PSS heterogeneity index (HI) was markedly greater in NCL MACE than in no-MACE VH-TCFAs (HI: 0.43 ± 0.05 vs. 0.29 ± 0.03, respectively; p = 0.01). Inclusion of PSS in plaque assessment improved the identification of NCLs that led to MACE, including in VH-TCFAs (p = 0.03) and plaques with MLA â€4 mm2 (p = 0.03). Incorporation of an HI further improved the ability of PSS to identify MACE NCLs in a variety of plaque subtypes including VH-TCFA (p = 0.001) and plaques with MLA â€4 mm2 (p = 0.002). CONCLUSIONS: PSS and variations in PSS are increased in the peri-MLA regions of plaques that lead to MACE. Moreover, longitudinal heterogeneity in PSS is markedly increased in MACE plaques, especially VH-TCFAs, potentially predisposing to plaque rupture. Incorporation of PSS and heterogeneity in PSS may improve the ability of IVUS to predict MACE.BH
Recommended from our members
Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress.
OBJECTIVES: The aim of this study was to identify the determinants of plaque structural stress (PSS) and the relationship between PSS and plaques with rupture. BACKGROUND: Plaque rupture is the most common cause of myocardial infarction, occurring particularly in higher risk lesions such as fibroatheromas. However, prospective intravascular ultrasound-virtual histology studies indicate that 135 kPa was a good predictor of rupture in higher risk regions. CONCLUSIONS: PSS is determined by plaque composition, plaque architecture, and lumen geometry. PSS and PSS variability are increased in plaques with rupture, particularly at proximal segments. Incorporating PSS into plaque assessment may improve identification of rupture-prone plaques.This work was supported by British Heart Foundation grants CH/20000003/12800, FS/13/33/30168, and FS/15/26/31441; Heart Research UK grant RG2638/14/16 and MRC Confidence in Concepts award; and the NIHR Cambridge Biomedical Research Centre
Heterogeneous plaque-lumen geometry is associated with major adverse cardiovascular events.
AIMS
Prospective studies show that only a minority of plaques with higher risk features develop future major adverse cardiovascular events (MACE), indicating the need for more predictive markers. Biomechanical estimates such as plaque structural stress (PSS) improve risk prediction but require expert analysis. In contrast, complex and asymmetric coronary geometry is associated with both unstable presentation and high PSS, and can be estimated quickly from imaging. We examined whether plaque-lumen geometric heterogeneity evaluated from intravascular ultrasound affects MACE and incorporating geometric parameters enhances plaque risk stratification.
METHODS AND RESULTS
We examined plaque-lumen curvature, irregularity, lumen aspect ratio (LAR), roughness, PSS, and their heterogeneity indices (HIs) in 44 non-culprit lesions (NCLs) associated with MACE and 84 propensity-matched no-MACE-NCLs from the PROSPECT study. Plaque geometry HI were increased in MACE-NCLs vs. no-MACE-NCLs across whole plaque and peri-minimal luminal area (MLA) segments (HI curvature: adjusted P = 0.024; HI irregularity: adjusted P = 0.002; HI LAR: adjusted P = 0.002; HI roughness: adjusted P = 0.004). Peri-MLA HI roughness was an independent predictor of MACE (hazard ratio: 3.21, P < 0.001). Inclusion of HI roughness significantly improved the identification of MACE-NCLs in thin-cap fibroatheromas (TCFA, P < 0.001), or with MLA †4â
mm2 (P < 0.001), or plaque burden (PB) â„ 70% (P < 0.001), and further improved the ability of PSS to identify MACE-NCLs in TCFA (P = 0.008), or with MLA †4â
mm2 (P = 0.047), and PB â„ 70% (P = 0.003) lesions.
CONCLUSION
Plaque-lumen geometric heterogeneity is increased in MACE vs. no-MACE-NCLs, and inclusion of geometric heterogeneity improves the ability of imaging to predict MACE. Assessment of geometric parameters may provide a simple method of plaque risk stratification
VH-IVUS and OCT identification of TCFA
BACKGROUND: Although rupture of thin-cap fibroatheroma (TCFA) underlies most myocardial infarctions, reliable TCFA identification remains challenging. Virtual-histology intravascular ultrasound (VH-IVUS) and optical coherence tomography (OCT) can assess tissue composition and classify plaques. However, direct comparisons between VH-IVUS and OCT are lacking and it remains unknown whether combining these modalities improves TCFA identification. METHODS AND RESULTS: Two hundred fifty-eight regions-of-interest were obtained from autopsied human hearts, with plaque composition and classification assessed by histology and compared with coregistered ex vivo VH-IVUS and OCT. Sixty-seven regions-of-interest were classified as fibroatheroma on histology, with 22 meeting criteria for TCFA. On VH-IVUS, plaque (10.91±4.82 versus 8.42±4.57 mm(2); P=0.01) and necrotic core areas (1.59±0.99 versus 1.03±0.85 mm(2); P=0.02) were increased in TCFA versus other fibroatheroma. On OCT, although minimal fibrous cap thickness was similar (71.8±44.1 ÎŒm versus 72.6±32.4; P=0.30), the number of continuous frames with fibrous cap thickness â€85 ÎŒm was higher in TCFA (6.5 [1.75-11.0] versus 2.0 [0.0-7.0]; P=0.03). Maximum lipid arc on OCT was an excellent discriminator of fibroatheroma (area under the curve, 0.92; 95% confidence interval, 0.87-0.97) and TCFA (area under the curve, 0.86; 95% confidence interval, 0.81-0.92), with lipid arc â„80° the optimal cut-off value. Using existing criteria, the sensitivity, specificity, and diagnostic accuracy for TCFA identification was 63.6%, 78.1%, and 76.5% for VH-IVUS and 72.7%, 79.8%, and 79.0% for OCT. Combining VH-defined fibroatheroma and fibrous cap thickness â€85 ÎŒm over 3 continuous frames improved TCFA identification, with diagnostic accuracy of 89.0%. CONCLUSIONS: Both VH-IVUS and OCT can reliably identify TCFA, although OCT accuracy may be improved using lipid arc â„80° and fibrous cap thickness â€85 ÎŒm over 3 continuous frames. Combined VH-IVUS/OCT imaging markedly improved TCFA identification.This study was funded by grants from the British Heart Foundation (FS/13/33/30168), Heart Research UK (RG2638/14/16), the Cambridge NIHR Biomedical Research Centre, and the BHF Cambridge Centre for Research Excellence.This is the final version of the article. It first appeared from American Heart Association via http://dx.doi.org/10.1161/CIRCIMAGING.115.00348
Recommended from our members
Investigation Into The Role Of Biomechanical Forces In Determining The Behaviour of Coronary Atherosclerotic Plaques
Ischaemic heart disease remains the single leading cause of death throughout the world. Rupture of an advanced atheromatous coronary plaque precipitates the majority of these clinical events, resulting in thrombosis and myocardial infarction. Post-mortem studies have identified thin-cap fibroatheroma (TCFA) as the plaque subtype most prone to rupture with prospective virtual-histology intravascular ultrasound (VH-IVUS) studies linking VH-TCFA to future adverse clinical events. VH-TCFA are however common along the coronary tree with the majority remaining clinically silent, suggesting that factors other than plaque phenotype play an important role in determining rupture and future plaque behaviour.
Rupture is thought to occur when the structural stress within the plaque exceeds the material strength of the overlying fibrous cap. Previous histological work has demonstrated that ruptured plaques are associated with higher stress compared to non-ruptured controls, with in vivo VH-IVUS studies linking higher plaque structural stress (PSS) with the presentation of acute coronary syndrome. Wall shear stress (WSS) on the other hand has been implicated in early plaque development and plaque growth suggesting that both PSS and WSS can influence future plaque behaviour.
The work presented in this thesis is associated with a number of novel findings. First, it is the only work to demonstrate that in vivo PSS is higher in coronary atherosclerotic plaques with rupture vs. no rupture across a range of plaque subtypes and irrespective of whether analysis of the entire plaque or of regions close to the minimal luminal area is performed. Second, it shows that the pattern and extent of plaque progression and regression defined as an increase and decrease in plaque area, respectively, are associated with specific biomechanical environments at baseline, in the only study that examines the role of both PSS and WSS in this process. More specifically, high PSS is associated with changes consistent with increased vulnerability both in areas of progression and regression. On the other hand, lower WSS at baseline is associated with greater increases in plaque area and burden in areas that progress and with smaller decreases in areas that regress largely due to changes in fibrous tissue. Although the role of WSS in determining future plaque behaviour has been previously examined, this is the first time that this is assessed specifically in areas of progression and regression, particularly important in view of the dynamic nature of atherosclerotic plaques. More importantly, the work presented in this thesis demonstrates that the interplay of these biomechanical forces is associated with specific patterns of plaque progression and regression despite the fact that PSS and WSS are independent of each other. This has never been previously demonstrated and further suggests that incorporation of biomechanical analysis can play role in the identification of plaques that lead to future clinical events. Finally, the ability of PSS to identify plaques that lead to adverse clinical events was assessed through a propensity core matched analysis of the PROSPECT (A Prospective Natural-History Study of Coronary Atherosclerosis) study. The analysis presented here is the largest, most extensive and thus most significant work to ever examine this with results suggesting that incorporation of PSS and associated parameters can improve the capability of VH-IVUS to identify plaques that lead to such events.
In summary, the results of this thesis suggest that coronary PSS plays an important role in the pathophysiology of plaque rupture, and that its incorporation in routine plaque assessment may improve our current ability to identifying coronary plaques that lead to future adverse clinical events. The interplay between PSS and WSS may also affect future plaque behaviour and in particular progression and regression. Prospective studies are now required to fully evaluate the role of these biomechanical forces in plaque development, and whether their incorporation in plaque evaluation can be of clinical significance.British Heart Foundatio