1,042 research outputs found
A brief review of recent advances on the Mott transition: unconventional transport, spectral weight transfers, and critical behaviour
Strongly correlated metals close to the Mott transition display unusual
transport regimes, together with large spectral weight transfers in optics and
photoemission. We briefly review the theoretical understanding of these
effects, based on the dynamical mean-field theory, and emphasize the key role
played by the two energy scales associated with quasiparticle coherence scale
and with the Mott gap. Recent experimental results on two-dimensional organic
compounds and transition metal oxides are considered in this perspective. The
liquid-gas critical behaviour at the Mott critical endpoint is also discussed.
Transport calculations using the numerical renormalization group are presented.Comment: Review article. 9 pages, 5 figures. Proceedings of the Vth
International Conference on Crystalline Organic Metals, Superconductors and
Magnets (ISCOM 2003
Thermoelectric transport through strongly correlated quantum dots
The thermoelectric properties of strongly correlated quantum dots, described
by a single level Anderson model coupled to conduction electron leads, is
investigated using Wilson's numerical renormalization group method. We
calculate the electronic contribution, , to the thermal conductance,
the thermopower, , and the electrical conductance, , of a quantum dot as
a function of both temperature, , and gate voltage, , for strong,
intermediate and weak Coulomb correlations, , on the dot. For strong
correlations and in the Kondo regime, we find that the thermopower exhibits two
sign changes, at temperatures and with
. Such sign changes in are particularly sensitive
signatures of strong correlations and Kondo physics. The relevance of this to
recent thermopower measurements of Kondo correlated quantum dots is discussed.
We discuss the figure of merit, power factor and the degree of violation of the
Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the
thermopower and thermal conductance of quantum dots in the Kondo regime is also
assessed.Comment: 21 pages, 12 figures; published versio
Looking ahead in Pulmonary Rehabilitation
Not availabl
The role of fairness and ambiguity in negotiating marketing alliances
This paper provides empirical support for the positive effects of distributive, procedural and interactional fairness on the choice to form a marketing alliance. Furthermore, the results provide some support for the negative impact of ambiguity in respect to the partner’s marketing capabilities on the choice to form a marketing alliance
The numerical renormalization group method for quantum impurity systems
In the beginning of the 1970's, Wilson developed the concept of a fully
non-perturbative renormalization group transformation. Applied to the Kondo
problem, this numerical renormalization group method (NRG) gave for the first
time the full crossover from the high-temperature phase of a free spin to the
low-temperature phase of a completely screened spin. The NRG has been later
generalized to a variety of quantum impurity problems. The purpose of this
review is to give a brief introduction to the NRG method including some
guidelines of how to calculate physical quantities, and to survey the
development of the NRG method and its various applications over the last 30
years. These applications include variants of the original Kondo problem such
as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative
quantum systems such as the spin-boson model, and lattice systems in the
framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy
Magnetotransport through a strongly interacting quantum dot
We study the effect of a magnetic field on the conductance through a strongly
interacting quantum dot by using the finite temperature extension of Wilson's
numerical renormalization group method to dynamical quantities. The quantum dot
has one active level for transport and is modelled by an Anderson impurity
attached to left and right electron reservoirs. Detailed predictions are made
for the linear conductance and the spin-resolved conductance as a function of
gate voltage, temperature and magnetic field strength. A strongly coupled
quantum dot in a magnetic field acts as a spin filter which can be tuned by
varying the gate voltage. The largest spin-filtering effect is found in the
range of gate voltages corresponding to the mixed valence regime of the
Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure
Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model
Using a real-time renormalization group method we determine the complete
dynamics of the spin-boson model with ohmic dissipation for coupling strengths
. We calculate the relaxation and dephasing time, the
static susceptibility and correlation functions. Our results are consistent
with quantum Monte Carlo simulations and the Shiba relation. We present for the
first time reliable results for finite cutoff and finite bias in a regime where
perturbation theory in or in tunneling breaks down. Furthermore, an
unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl
Kondo proximity effect: How does a metal penetrate into a Mott insulator?
We consider a heterostructure of a metal and a paramagnetic Mott insulator
using an adaptation of dynamical mean field theory to describe inhomogeneous
systems. The metal can penetrate into the insulator via the Kondo effect. We
investigate the scaling properties of the metal-insulator interface close to
the critical point of the Mott insulator. At criticality, the quasiparticle
weight decays as 1/x^2 with distance x from the metal within our mean field
theory. Our numerical results (using the numerical renormalization group as an
impurity solver) show that the prefactor of this power law is extremely small.Comment: 4 pages, 3 figure
Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys
The effect of a magnetic field on the spectral density of a
Kondo impurity is investigated at zero and finite temperatures by using
Wilson's numerical renormalization group method. A splitting of the total
spectral density is found for fields larger than a critical value
, where is the Kondo scale. The splitting
correlates with a peak in the magnetoresistivity of dilute magnetic alloys
which we calculate and compare with the experiments on
. The linear magnetoconductance of quantum
dots exhibiting the Kondo effect is also calculated.Comment: 4 pages, 4 eps figure
Mechanism for large thermoelectric power in negative-U molecular quantum dots
We investigate with the aid of numerical renormalization group techniques the
thermoelectric properties of a molecular quantum dot described by the
negative-U Anderson model. We show that the charge Kondo effect provides a
mechanism for enhanced thermoelectric power via a correlation induced asymmetry
in the spectral function close to the Fermi level. We show that this effect
results in a dramatic enhancement of the Kondo induced peak in the thermopower
of negative-U systems with Seebeck coefficients exceeding 50 over a
wide range of gate voltages.Comment: 4 pages, 4 figures; published versio
- …