22 research outputs found

    Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications

    Get PDF
    The success of regenerative medicine in various clinical applications depends on the appropriate selection of the source of mesenchymal stem cells (MSCs). Indeed, the source conditions, the quality and quantity of MSCs, have an influence on the growth factors, cytokines, extracellular vesicles, and secrete bioactive factors of the regenerative milieu, thus influencing the clinical result. Thus, optimal source selection should harmonize this complex setting and ensure a well-personalized and effective treatment. Mesenchymal stem cells (MSCs) can be obtained from several sources, including bone marrow and adipose tissue, already used in orthopedic regenerative applications. In this sense, for bone, dental, and oral injuries, MSCs could provide an innovative and effective therapy. The present review aims to compare the properties (proliferation, migration, clonogenicity, angiogenic capacity, differentiation potential, and secretome) of MSCs derived from bone marrow, adipose tissue, and dental tissue to enable clinicians to select the best source of MSCs for their clinical application in bone and oral tissue regeneration to delineate new translational perspectives. A review of the literature was conducted using the search enginesWeb of Science, Pubmed, Scopus, and Google Scholar. An analysis of different publications showed that all sources compared (bone marrow mesenchymal stem cells (BM-MSCs), adipose tissue mesenchymal stem cells (AT-MSCs), and dental tissue mesenchymal stem cells (DT-MSCs)) are good options to promote proper migration and angiogenesis, and they turn out to be useful for gingival, dental pulp, bone, and periodontal regeneration. In particular, DT-MSCs have better proliferation rates and AT and G-MSC sources showed higher clonogenicity. MSCs from bone marrow, widely used in orthopedic regenerative medicine, are preferable for their differentiation ability. Considering all the properties among sources, BM-MSCs, AT-MSCs, and DT-MSCs present as potential candidates for oral and dental regeneration.Junta de Andalucia"5 per mille" research grant 73042

    SARS-CoV2 infection: the role of cytokines in COVID-19 disease

    Get PDF
    Elsevier concede permiso para que toda su investigación relacionada con COVID-19 que esté disponible en el centro de recursos COVID-19 -incluido el contenido de esta investigación- esté inmediatamente disponible en PubMed Central y otros repositorios financiados con fondos públicos, como la base de datos COVID de la OMS, con derechos para su reutilización y análisis de investigación sin restricciones en cualquier forma o por cualquier medio con reconocimiento de la fuente original. Estos permisos son concedidos gratuitamente por Elsevier mientras permanezca activo el centro de recursos COVID-19.COVID-19 disease, caused by infection with SARS-CoV-2, is related to a series of physiopathological mechanisms that mobilize a wide variety of biomolecules, mainly immunological in nature. In the most severe cases, the prognosis can be markedly worsened by the hyperproduction of mainly proinflammatory cytokines, such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, preferentially targeting lung tissue. This study reviews published data on alterations in the expression of different cytokines in patients with COVID-19 who require admission to an intensive care unit. Data on the implication of cytokines in this disease and their effect on outcomes will support the design of more effective approaches to the management of COVID-19.Este estudio ha contado con el apoyo del grupo de investigación BIO277 (Junta de Andalucía) y del Departamento de Enfermería de la Universidad de Granada

    Impact of bisphosphonates on the proliferation and gene expression of human fibroblasts

    Get PDF
    The aim of this study was to elucidate the role of fibroblasts in bisphosphonate-related osteonecrosis of the jaw (BRONJ), evaluating the effect of zoledronate, alendronate, and ibandronate on the proliferation of fibroblasts and on their expression of genes essential for fibroblast physiology. Human CCD-1064Sk epithelial fibroblast cells were incubated in culture medium with 10-5, 10-7, or 10-9 M zoledronate, alendronate, or ibandronate. The proliferative capacity of fibroblasts was determined by spectrophotometry (MTT) at 24 of culture. Real-time polymerase chain reaction (RT-PCR) was used to study the effects of BPs at a dose of 10-9 M on the expression of FGF, CTGF, TGF-β1, TGFβR1, TGFβR2, TGFβR3, DDR2, α-actin, fibronectin, decorin, and elastin. Fibroblasts proliferation was significantly increased at the lowest dose (10-9M) of each BP but was not affected at the higher doses (10-5 and 10-7M). The proliferation increase may be related to the rise in TGF-β1 and TGFβR1 expression detected after the treatment of cells with 10-9M of zoledronate, alendronate, or ibandronate. However, the expression of CTGF, DDR2, α-actin, fibronectin, and decorin decreased versus controls. The results of this in vitro study indicate that a very low BP dose (10-9 M) can significantly affect the physiology of fibroblasts, increasing their proliferative capacity and modulating the expression of multiple genes involved in their growth and differentiation

    Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts

    Get PDF
    This research was funded by (1) the Ministry of Economy and Competitiveness and European Regional Development Fund [Project MAT2017-85999-P MINECO/AEI/FEDER/UE], (2) University of Granada/Regional Government of Andalusia Research Fund from Spain and European Regional Development Fund (A-BIO-157-UGR-18/FEDER). This research is part of Manuel Toledano-Osorio’s PhD research study.Polymeric membranes are employed in guided bone regeneration (GBR) as physical barriers to facilitate bone in-growth. A bioactive and biomimetic membrane with the ability to participate in the healing and regeneration of the bone is necessary. The aim of the present study was to analyze how novel silicon dioxide composite membranes functionalized with zinc or doxycycline can modulate the osteoblasts' proliferation, differentiation, and expression of selected antigenic markers related to immunomodulation. Nanostructured acrylate-based membranes were developed, blended with silica, and functionalized with zinc or doxycycline. They were subjected to MG63 osteoblast-like cells culturing. Proliferation was assessed by MTT-assay, differentiation by evaluating the alkaline phosphatase activity by a spectrophotometric method and antigenic phenotype was assessed by flow cytometry for selected markers. Mean comparisons were conducted by one-way ANOVA and Tukey tests (p < 0.05). The blending of silica nanoparticles in the tested non-resorbable polymeric scaffold improved the proliferation and differentiation of osteoblasts, but doxycycline doped scaffolds attained the best results. Osteoblasts cultured on doxycycline functionalized membranes presented higher expression of CD54, CD80, CD86, and HLA-DR, indicating a beneficial immunomodulation activity. Doxycycline doped membranes may be a potential candidate for use in GBR procedures in several challenging pathologies, including periodontal disease.European Commission MAT2017-85999-P A-BIO-157-UGR-18/FEDERMinistry of Economy and Competitiveness MAT2017-85999-PUniversity of Granada/Regional Government of Andalusia Research Fund from Spain A-BIO-157-UGR-18/FEDE

    Dexamethasone and doxycycline functionalized nanoparticles enhance osteogenic properties of titanium surfaces

    Get PDF
    Objectives: To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. Methods: Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti- DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast- like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were con- ducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). Results: No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-ex- pression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold in- crease with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. Significance: DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative proce- dures around titanium dental implants.Grant PID2020–114694RB-I00 funded by MCIN/AEI 10.13039/501100011033FPU of Ministry of Universities grant FPU20/0045Klockner S.A. for financial support and for providing the titanium disc

    Effects of Therapeutic Doses of Celecoxib on Several Physiological Parameters of Cultured Human Osteoblasts

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase-2 (COX-2)-selective NSAIDs, are associated with adverse effects on bone tissue. These drugs are frequently the treatment of choice but are the least studied with respect to their repercussion on bone. The objective of this study was to determine the effects of celecoxib on cultured human osteoblasts. Human osteoblasts obtained by primary culture from bone samples were treated with celecoxib at doses of 0.75, 2, or 5μM for 24 h. The MTT technique was used to determine the effect on proliferation; flow cytometry to establish the effect on cell cycle, cell viability, and antigenic profile; and real-time polymerase chain reaction to measure the effect on gene expressions of the differentiation markers RUNX2, alkaline phosphatase (ALP), osteocalcin (OSC), and osterix (OSX). Therapeutic doses of celecoxib had no effect on osteoblast cell growth or antigen expression but had a negative impact on the gene expression of RUNX2 and OSC, although there was no significant change in the expression of ALP and OSX. Celecoxib at therapeutic doses has no apparent adverse effects on cultured human osteoblasts and only inhibits the expression of some differentiation markers. These characteristics may place this drug in a preferential position among NSAIDs used for analgesic and anti-inflammatory therapy during bone tissue repair.This study was supported by research group BIO277 (Junta de Andalucía) and Department of Nursing (University of Granada). The work outlined in this article has been supported by the Spanish Ministry of Education under FPU fellowship reference FPU15-05635 and FPU16-04141

    Repercussions of Bisphenol A on the Physiology of Human Osteoblasts

    Get PDF
    (1) Background: Bisphenol A (BPA) is an endocrine disruptor that is widely present in the environment and exerts adverse effects on various body tissues. The objective of this study was to determine its repercussions on bone tissue by examining its impact on selected functional parameters of human osteoblasts. (2) Methods: Three human osteoblast lines were treated with BPA at doses of 10(-5), 10(-6), or 10(-7) M. At 24 h post-treatment, a dose-dependent inhibition of cell growth, alkaline phosphatase activity, and mineralization was observed. (4) Results: The expression of CD54 and CD80 antigens was increased at doses of 10(-5) and 10(-6) M, while the phagocytic capacity and the expression of osteogenic genes (ALP, COL-1, OSC, RUNX2, OSX, BMP-2, and BMP-7) were significantly and dose-dependently reduced in the presence of BPA. (5) Conclusions: According to these findings, BPA exerts adverse effects on osteoblasts by altering their differentiation/maturation and their proliferative and functional capacity, potentially affecting bone health. Given the widespread exposure to this contaminant, further human studies are warranted to determine the long-term risk to bone health posed by BPA

    Effects of bisphenol F, bisphenol S, and bisphenol AF on cultured human osteoblasts

    Get PDF
    Bisphenol A (BPA) analogs, like BPA, could have adverse effects on human health including bone health. The aim was to determine the effect of BPF, BPS and BPAF on the growth and differentiation of cultured human osteoblasts. Osteoblasts primary culture from bone chips harvested during routine dental work and treated with BPF, BPS, or BPAF for 24 h at doses of 10 –5 , 10 –6 , and 10 –7 M. Next, cell proliferation was studied, apoptosis induction, and alkaline phosphatase (ALP) activity. In addition, mineralization was evaluated at 7, 14, and 21 days of cell culture in an osteogenic medium supplemented with BP analog at the studied doses. BPS treatment inhibited proliferation in a dose-dependent manner at all three doses by inducing apoptosis; BPF exerted a significant inhibitory effect on cell proliferation at the highest dose alone by an increase of apopto- sis; while BPAF had no effect on proliferation or cell viability. Cell differentiation was adversely affected by treatment with BPA analogs in a dose-dependent, observing a reduction in calcium nodule formation at 21 days. According to the results obtained, these BPA analogs could potentially pose a threat to bone health, depending on their concentration in the organism.Funding for open access publishing: Universidad de Granada/ CBU

    Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells

    Get PDF
    Some micronutrients of vegetable origin are considered potentially useful as wound-healing agents because they can increase fibroblast proliferation and differentiation. The aim of this study was to evaluate the regenerative effects of selected olive oil phenolic compounds on cultured human fibroblasts and explore their antimicrobial properties. Material and methods: The CCD-1064Sk fibroblast line was treated for 24 h with 10-6M luteolin, apigenin, ferulic, coumaric acid or caffeic acid, evaluating the effects on cell proliferation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) spectrophotometric assay; the migratory capacity by the scratch assay and determining the expression of Fibroblast Growth Factor (FGF), Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor- β1 (TGFβ1), Platelet Derived Growth Factor (PDGF), and Collagen Type I (COL-I) genes by real-time polymerase chain reaction. The antimicrobial capacity of the polyphenols was evaluated by the disc diffusion method. Results: All compounds except for ferulic acid significantly stimulated the proliferative capacity of fibroblasts, increasing their migration and their expression of the aforementioned genes. With respect to their antimicrobial properties, treatment with the studied compounds inhibited the growth of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus spp., and Candida Albicans. Conclusions: The phenolic compounds in olive oil have a biostimulatory effect on the regeneration capacity, differentiation, and migration of fibroblasts and exert major antibacterial activity. According to the present findings, these compounds may have a strong therapeutic effect on wound recovery.Grupo BIO-277Departamento de Enfermerí

    Role of Vitamin D in the Metabolic Syndrome

    Get PDF
    This study was supported by research group BIO277 (Junta de Andalucía) and the Department of Nursing (University of Granada).The prevalence of hypovitaminosis D has risen in developed countries over the past few years in association with lifestyle changes and an increase in unhealthy habits. Vitamin D deficiency has been implicated in various diseases, including metabolic syndrome (MetS), which is clinically defined by a set of metabolic and vascular disorders. The objective of this study was to review scientific evidence on the relationship between MetS and vitamin D deficiency to support the development of prevention strategies and health education programs. An inverse relationship has been reported between plasma vitamin D concentrations and the features that define MetS, i.e., elevated serum concentrations of glucose, total cholesterol, low-density lipoproteins, triglycerides, glycosylated hemoglobin, and a high body mass index. Numerous studies have described the benefits of vitamin D supplementation to improve outcomes in individuals with MetS. Interventions to maintain optimal vitamin D concentrations are proposed as a preventive strategy against MetS.Junta de AndaluciaDepartment of Nursing (University of Granada
    corecore