3,694 research outputs found

    Tuning the polarized quantum phonon transmission in graphene nanoribbons

    Get PDF
    We propose systems that allow a tuning of the phonon transmission function T(ω\omega) in graphene nanoribbons by using C13^{13} isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(ω\omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(ω\omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies ων\omega_{\nu} which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(ω)(\omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials

    Partially unzipped carbon nanotubes as magnetic field sensors

    Full text link
    The conductance, G(E)G(E), through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider (z)igzag and (a)rmchair CNTs that are partially unzipped to form aGNR/zCNT/aGNR or zGNR/aCNT/zGNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. Unlike previous studies, for the zGNR/aCNT/zGNR junction in zero field, we find a sharp dip in the conductance as the energy approaches the Dirac point and we attribute this non-trivial behavior to the peculiar band dispersion of the constituent subsystems. We demonstrate that both types of junctions can be used as magnetic field sensors.Comment: final version to appear in Applied Physics Letter

    Spectral gap induced by structural corrugation in armchair graphene nanoribbons

    Full text link
    We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP), move away one from the other. Otherwise, the Fermi velocity decrease by increasing rippling. Regarding the AGNRs, whose metallic behavior depends on their width, we analyze in particular the case of the zero gap band-structure AGNRs. By solving the Dirac equation with the adequate boundary condition we show that due to the shifting of the DP a gap opens in the spectra. This gap scale with the square of the rate between the high and the wavelength of the deformation. We confirm this prediction by exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the non equilibrium Green's function technique vanish when the gap open. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR independent of their width.Comment: 7 pages, 5 figure

    The role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons

    Get PDF
    Quantum thermal transport in armchair and zig-zag graphene nanoribbons are investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edges ribbons we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported-edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W2^2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the non equilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edges samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale

    Book review: economic governance in Europe: comparative paradoxes and constitutional challenges by Federico Fabbrini

    Get PDF
    In Economic Governance in Europe: Comparative Paradoxes and Constitutional Challenges, Federico Fabbrini outlines the impact of the Euro crisis on the constitutional and legal architecture of the European Union, arguing for a shift from constitutional arrangements rooted in ‘accident and force’ to systems ‘designed on the basis of reflection and choice’. Francesco Costamagna welcomes this as a refreshing challenge to the assumption that movement towards an EU super-state is the best solution to current challenges
    • …
    corecore