239 research outputs found
On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains
We construct a bounded domain in for which the
regularity for the Dirichlet and Neumann problems for the Laplacian
cannot be improved, that is, there exists in
such that the solution of in and either on
or on is contained in
but not in for any
. An analogous result holds for Sobolev spaces with
Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo-homogeneous boundary integral operators
In this paper we study the shape differentiability properties of a class of
boundary integral operators and of potentials with weakly singular
pseudo-homogeneous kernels acting between classical Sobolev spaces, with
respect to smooth deformations of the boundary. We prove that the boundary
integral operators are infinitely differentiable without loss of regularity.
The potential operators are infinitely shape differentiable away from the
boundary, whereas their derivatives lose regularity near the boundary. We study
the shape differentiability of surface differential operators. The shape
differentiability properties of the usual strongly singular or hypersingular
boundary integral operators of interest in acoustic, elastodynamic or
electromagnetic potential theory can then be established by expressing them in
terms of integral operators with weakly singular kernels and of surface
differential operators
Shape derivatives of boundary integral operators in electromagnetic scattering. Part II : Application to scattering by a homogeneous dielectric obstacle
We develop the shape derivative analysis of solutions to the problem of
scattering of time-harmonic electromagnetic waves by a bounded penetrable
obstacle. Since boundary integral equations are a classical tool to solve
electromagnetic scattering problems, we study the shape differentiability
properties of the standard electromagnetic boundary integral operators. The
latter are typically bounded on the space of tangential vector fields of mixed
regularity TH\sp{-1/2}(\Div_{\Gamma},\Gamma). Using Helmholtz decomposition,
we can base their analysis on the study of pseudo-differential integral
operators in standard Sobolev spaces, but we then have to study the G\^ateaux
differentiability of surface differential operators. We prove that the
electromagnetic boundary integral operators are infinitely differentiable
without loss of regularity. We also give a characterization of the first shape
derivative of the solution of the dielectric scattering problem as a solution
of a new electromagnetic scattering problem.Comment: arXiv admin note: substantial text overlap with arXiv:1002.154
Shape derivatives of boundary integral operators in electromagnetic scattering
We develop the shape derivative analysis of solutions to the problem of
scattering of time-harmonic electromagnetic waves by a bounded penetrable
obstacle. Since boundary integral equations are a classical tool to solve
electromagnetic scattering problems, we study the shape differentiability
properties of the standard electromagnetic boundary integral operators. Using
Helmholtz decomposition, we can base their analysis on the study of scalar
integral operators in standard Sobolev spaces, but we then have to study the
G\^ateaux differentiability of surface differential operators. We prove that
the electromagnetic boundary integral operators are infinitely differentiable
without loss of regularity and that the solutions of the scattering problem are
infinitely shape differentiable away from the boundary of the obstacle, whereas
their derivatives lose regularity on the boundary. We also give a
characterization of the first shape derivative as a solution of a new
electromagnetic scattering problem
On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body
The interface problem describing the scattering of time-harmonic
electromagnetic waves by a dielectric body is often formulated as a pair of
coupled boundary integral equations for the electric and magnetic current
densities on the interface . In this paper, following an idea developed
by Kleinman and Martin \cite{KlMa} for acoustic scattering problems, we
consider methods for solving the dielectric scattering problem using a single
integral equation over for a single unknown density. One knows that
such boundary integral formulations of the Maxwell equations are not uniquely
solvable when the exterior wave number is an eigenvalue of an associated
interior Maxwell boundary value problem. We obtain four different families of
integral equations for which we can show that by choosing some parameters in an
appropriate way, they become uniquely solvable for all real frequencies. We
analyze the well-posedness of the integral equations in the space of finite
energy on smooth and non-smooth boundaries
Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms
International audienceFor sufficiently smooth bounded plane domains, the equivalence between the inequalities of Babuška –Aziz for right inverses of the divergence and of Friedrichs on conjugate harmonic functions was shown by Horgan and Payne in 1983 [7]. In a previous paper [4] we proved that this equivalence, and the equality between the associated constants, is true without any regularity condition on the domain. In three dimensions, Velte [9] studied a generalization of the notion of conjugate harmonic functions and corresponding generalizations of Friedrich's inequality, and he showed for sufficiently smooth simply-connected domains the equivalence with inf-sup conditions for the divergence and for the curl. For this equivalence, Zsuppán [10] observed that our proof can be adapted, proving the equality between the corresponding constants without regularity assumptions on the domain. Here we formulate a generalization of the Friedrichs inequality for conjugate harmonic differential forms on bounded open sets in any dimension that contains the situations studied by Horgan–Payne and Velte as special cases. We also formulate the corresponding inf-sup conditions or Babuška –Aziz inequalities and prove their equivalence with the Friedrichs inequalities, including equality between the corresponding constants. No a-priori conditions on the regularity of the open set nor on its topology are assumed
Volume integral equations for electromagnetic scattering in two dimensions
We study the strongly singular volume integral equation that describes the
scattering of time-harmonic electromagnetic waves by a penetrable obstacle. We
consider the case of a cylindrical obstacle and fields invariant along the axis
of the cylinder, which allows the reduction to two-dimensional problems. With
this simplification, we can refine the analysis of the essential spectrum of
the volume integral operator started in a previous paper (M. Costabel, E.
Darrigrand, H. Sakly: The essential spectrum of the volume integral operator in
electromagnetic scattering by a homogeneous body, Comptes Rendus Mathematique,
350 (2012), pp. 193-197) and obtain results for non-smooth domains that were
previously available only for smooth domains. It turns out that in the TE case,
the magnetic contrast has no influence on the Fredholm properties of the
problem. As a byproduct of the choice that exists between a vectorial and a
scalar volume integral equation, we discover new results about the symmetry of
the spectrum of the double layer boundary integral operator on Lipschitz
domains.Comment: 21 page
Some historical remarks on the positivity of boundary integral operators
27 pagesVariational arguments go back a long time in the history of boundary integral equations. Energy methods have shown up very early, then virtually disappeared from the common knowledge and eventually resurfaced in the context of boundary element methods. We focus on some not so well known parts of classical works by well known classical authors and describe the relation of their ideas to modern variational principles in boundary element methods
Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra
We prove weighted anisotropic analytic estimates for solutions of second
order elliptic boundary value problems in polyhedra. The weighted analytic
classes which we use are the same as those introduced by Guo in 1993 in view of
establishing exponential convergence for hp finite element methods in
polyhedra. We first give a simple proof of the known weighted analytic
regularity in a polygon, relying on a new formulation of elliptic a priori
estimates in smooth domains with analytic control of derivatives. The technique
is based on dyadic partitions near the corners. This technique can successfully
be extended to polyhedra, providing isotropic analytic regularity. This is not
optimal, because it does not take advantage of the full regularity along the
edges. We combine it with a nested open set technique to obtain the desired
three-dimensional anisotropic analytic regularity result. Our proofs are global
and do not require the analysis of singular functions.Comment: 54 page
- …