48,558 research outputs found

    Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method

    Get PDF
    Within the framework of time-dependent density functional theory combined with the Korringa-Kohn-Rostoker Green function formalism, we present a real space methodology to investigate dynamical magnetic excitations from first-principles. We set forth a scheme which enables one to deduce the correct effective Coulomb potential needed to preserve the spin-invariance signature in the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to explore the spin dynamics of 3d adatoms and different dimers deposited on a Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl

    Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect

    Full text link
    We present theoretical studies of the influence of spin orbit coupling on the spin wave excitations of the Fe monolayer and bilayer on the W(110) surface. The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the absence of reflection symmetry in the plane of the film. When the magnetization is in plane, this leads to a linear term in the spin wave dispersion relation for propagation across the magnetization. The dispersion relation thus assumes a form similar to that of an energy band of an electron trapped on a semiconductor surfaces with Rashba coupling active. We also show SPEELS response functions that illustrate the role of spin orbit coupling in such measurements. In addition to the modifications of the dispersion relations for spin waves, the presence of spin orbit coupling in the W substrate leads to a substantial increase in the linewidth of the spin wave modes. The formalism we have developed applies to a wide range of systems, and the particular system explored in the numerical calculations provides us with an illustration of phenomena which will be present in other ultrathin ferromagnet/substrate combinations
    • …
    corecore