61,774 research outputs found

    Electronic oscillations in paired polyacetylene chains

    Full text link
    An interacting pair of polyacetylene chains are initially modeled as a couple of undimerized polymers described by a Hamiltonian based on the tight-binding model representing the electronic behavior along the linear chain, plus a Dirac's potential double well representing the interaction between the chains. A theoretical field formalism is employed, and we find that the system exhibits a gap in its energy band due to the presence of a mass-matrix term in the Dirac's Lagrangian that describes the system. The Peierls instability is introduced in the chains by coupling a scalar field to the fermions of the theory via spontaneous symmetry breaking, to obtain a kink-like soliton, which separates two vacuum regions, i.e., two spacial configurations (enantiomers) of the each molecule. Since that mass-matrix and the pseudo-spin operator do not commute in the same quantum representation, we demonstrate that there is a particle oscillation phenomenon with a periodicity equivalent to the Bloch oscillations.Comment: 4 pages, 1 figure.to appear in Solid State Communication

    Photon mass as a probe to extra dimensions

    Get PDF
    In this manuscript we show that the geometrical localization mechanism implies a four dimensional mass for the photon. The consistence of the model provides a mass given exactly by mγ=R/4m_{\gamma}=\sqrt{R}/4 where RR is the Ricci scalar. As a consequence, the cosmological photon has a mass related to the vacuum solution of the Einstein equation. At the present age of the universe we have a dS vacuum with R=4ΛR=4\Lambda, where Lambda is a positive cosmological constant. With this we find that mγ≈2×10−69m_{\gamma}\approx 2\times 10^{-69} kg, which is below the present experimental upper bounds, and such correction may be observed in the next years with more precise measurements. By considering the value of RR inside some astrophysical sources and environments we find that the bound is also satisfied. The experimental verification of this mass, beyond pointing to the existence of extra dimensions, would imply in a fundamental change in cosmology, astrophysics and in particle physics since the same mechanism is valid for non-abelian gauge fields.Comment: 4 page

    Growth-Driven Percolations: The Dynamics of Community Formation in Neuronal Systems

    Full text link
    The quintessential property of neuronal systems is their intensive patterns of selective synaptic connections. The current work describes a physics-based approach to neuronal shape modeling and synthesis and its consideration for the simulation of neuronal development and the formation of neuronal communities. Starting from images of real neurons, geometrical measurements are obtained and used to construct probabilistic models which can be subsequently sampled in order to produce morphologically realistic neuronal cells. Such cells are progressively grown while monitoring their connections along time, which are analysed in terms of percolation concepts. However, unlike traditional percolation, the critical point is verified along the growth stages, not the density of cells, which remains constant throughout the neuronal growth dynamics. It is shown, through simulations, that growing beta cells tend to reach percolation sooner than the alpha counterparts with the same diameter. Also, the percolation becomes more abrupt for higher densities of cells, being markedly sharper for the beta cells.Comment: 8 pages, 10 figure
    • …
    corecore