37,512 research outputs found

    Pseudoscalars Mesons in Hot, Dense Matter

    Full text link
    Phase transitions in hot and dense matter and the in--medium behavior of pseudoscalar mesons (π±,π0,K±,K0,Kˉ0,ηandη\pi^{\pm}, \pi^0, K^{\pm}, K^0 ,\bar K^0,\eta {and} \eta' ) are investigated, in the framework of the three flavor Nambu--Jona-Lasinio model, including the 't Hooft interaction, which breaks the UA(1)U_A(1) symmetry. Three different scenarios are considered: zero density and finite temperature, zero temperature and finite density in quark matter with different degrees of strangeness, and finite temperature and density. At T=0, the role of strange valence quarks in the medium is discussed, in connection with the phase transition and the mesonic behavior. It is found that the appearance of strange quarks, above certain densities, leads to meaningful changes in different observables, especially in matter with \betaequilibrium.Thebehaviorofmesonsinthe --equilibrium. The behavior of mesons in the T-\rho$ plane is analyzed in connection with possible signatures of restoration of symmetries.Comment: 33 pages, 12 figures, PRC versio

    Effective restoration of chiral and axial symmetries at finite temperature and density

    Full text link
    The effective restoration of chiral and axial symmetries is investigated within the framework of the SU(3) Nambu-Jona-Lasinio model. The topological susceptibility, modeled from lattice data at finite temperature, is used to extract the temperature dependence of the coupling strength of the anomaly. The study of the scalar and pseudoscalar mixing angles is performed in order to discuss the evolution of the flavor combinations of qqˉq \bar q pairs and its consequences for the degeneracy of chiral partners. A similar study at zero temperature and finite density is also realized.Comment: 5 pages, 1 figure. Talk given at Strange Quark Matter 2004, Cape Town, South Africa, 15-20 September, 200

    Quantum Topology Change in (2 + 1)d

    Get PDF
    The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degrees of freedom related to topology are separated from the complete theory that contains metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.Comment: LaTeX file, 33 pages, 10 postscript figures, some typos corrected, references updated, and other minor change

    Universal relaxation function in nonextensive systems

    Full text link
    We have derived the dipolar relaxation function for a cluster model whose volume distribution was obtained from the generalized maximum Tsallis nonextensive entropy principle. The power law exponents of the relaxation function are simply related to a global fractal parameter α\alpha and for large time to the entropy nonextensivity parameter qq. For intermediate times the relaxation follows a stretched exponential behavior. The asymptotic power law behaviors both in the time and the frequency domains coincide with those of the Weron generalized dielectric function derived from an extension of the Levy central limit theorem. They are in full agreement with the Jonscher universality principle. Moreover our model gives a physical interpretation of the mathematical parameters of the Weron stochastic theory and opens new paths to understand the ubiquity of self-similarity and power laws in the relaxation of large classes of materials in terms of their fractal and nonextensive properties.Comment: Two figures. Submitted for publicatio

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    Motor‐evoked potentials reveal a motor‐cortical readout of evidence accumulation for sensorimotor decisions

    Get PDF
    Many everyday activities require time-pressured sensorimotor decision making. Traditionally, perception, decision, and action processes were considered to occur in series, but this idea has been successfully challenged, particularly by neurophysiological work in animals. However, the generality of parallel processing requires further elucidation. Here, we investigate whether the accumulation of a decision can be observed intrahemispherically within human motor cortex. Participants categorized faces as male or female, with task difficulty manipulated using morphed stimuli. Transcranial magnetic stimulation, applied during the reaction-time interval, produced motor-evoked potentials (MEPs) in two hand muscles that were the major contributors when generating the required pinch/grip movements. Smoothing MEPs using a Gaussian kernel allowed us to recover a continuous time-varying MEP average, comparable to an EEG component, permitting precise localization of the time at which the motor plan for the responding muscle became dominant. We demonstrate decision-related activity in the motor cortex during this perceptual discrimination task, suggesting ongoing evidence accumulation within the motor system even for two independent actions represented within one hemisphere

    Adubação nitrogenada para pastagens do gênero Brachiaria em solos do Cerrado.

    Get PDF
    Introdução; Gênero Brachiaria; Matéria orgânica do solo e sua relação com a disponibilidade de N; Adições de nitrogênio ao sistema solo-pastagem; Importância da adubação nitrogenada em pastagens; Concentrações de nitrogênio e estimativa do teor de clorofila; Dinâmica do nitrogênio em pastagens; Perdas de nitrogênio do sistema solo-pastagem; Eficiência e recuperação do nitrogênio; Eficiência do nitrogênio na produção animal; Recomendação de adubação nitrogenada; Recomendação de adubação nitrogenada para o gênero Brachiaria de acordo com a fertilidade do solo; Recomendação de adubação nitrogenada para o gênero Brachiaria de acordo com o sistema de pastejo; Formas de aplicação de nitrogênio para pastagens; Considerações finais.bitstream/CNPAF/25514/1/doc_192.pd

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Vortex behavior near a spin vacancy in 2D XY-magnets

    Full text link
    The dynamical behavior of anisotropic two dimensional Heisenberg models is still a matter of controversy. The existence of a central peak at all temperatures and a rich structure of magnon peaks are not yet understood. It seems that the central peaks are related, in some way, to structures like vortices. In order to contribute to the discussion of the dynamical behavior of the model we use Monte Carlo and spin dynamics simulations as well analytical calculations to study the behavior of vortices in the presence of nonmagnetic impurities. Our simulations show that vortices are attracted and trapped by the impurities. Using this result we show that if we suppose that vortices are not very much disturbed by the presence of the impurities, then they work as an attractive potential to the vortices explaining the observed behavior in our simulations.Comment: 4 pages, 6 figure
    corecore