46,763 research outputs found

    Efficiency of low versus high airline pressure in stunning cattle with a pneumatically powered penetrating captive bolt gun

    Get PDF
    The efficiency of stunning cattle was assessed in 443 animals (304 pure Zebu and 139 crossbred cattle), being mainly mature bulls and cows. Cattle were stunned using a Jarvis pneumatically powered penetrating captive bolt gun operating with low (160–175 psi, N = 82) and high (190 psi, N = 363) airline pressure, which was within the manufactures specifications. Signs of brain function and the position of the shots on the heads were recorded after stunning. Velocity of the captive bolt and its physical parameters were calculated. Cattle shot with low pressures showed more rhythmic respiration (27 vs. 8%, P < 0.001), less tongue protrusion (4 vs. 12%, P = 0.03) and less masseter relaxation (22 vs. 48%, P < 0.001). There was an increased frequency of shots in the ideal position when cattle were shot with the low compared to high airline pressures (15.3 vs. 3.1%). Bolt velocity and its physical parameters were significantly (P < 0.01) higher when using high pressure. Airline pressures below 190 psi are inappropriate when shooting adult Zebu beef cattle with pneumatically powered penetrating captive bolt guns

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Coleman meets Schwinger

    Get PDF
    It is well known that spherical D-branes are nucleated in the presence of an external RR electric field. Using the description of D-branes as solitons of the tachyon field on non-BPS D-branes, we show that the brane nucleation process can be seen as the decay of the tachyon false vacuum. This process can describe the decay of flux-branes in string theory or the decay of quintessence potentials arising in flux compactifications.Comment: 5 pages, 2 figure

    Influence of interface potential on the effective mass in Ge nanostructures

    Full text link
    The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism we determine the length scale over which the interface potential influences the effective mass

    Gauge fields in a string-cigar braneworld

    Get PDF
    In this work we investigate the properties of an Abelian gauge vector field in a thin and in a smoothed string-like braneworld, the so-called string-cigar model. This thick brane scenario satisfies the regularity conditions and it can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci flow which is connected to a variation of the bulk cosmological constant. The Ricci flow changes the width and amplitude of the massless mode at the brane core and recover the usual thin string-like behavior at large distances. By numerical means we obtain the Kaluza-Klein (KK) spectrum for both the thin brane and the string-cigar. It turns out that both models exhibit a mass gap between the massless and the massive modes and between the high and the low mass regimes. The KK modes are smooth near the brane and their amplitude are enhanced by the string-cigar core. The analogue Schr\"odinger potential is also tuned by the geometric flow.Comment: The discussion about the Kaluza-Klein spectrum of the gauge field was improved. Numerical analysis was adapted to the conventional notation on Kaluza-Klein number. Some graphics were modified for considering other notation. Results unchanged. References added. Corrected typos. 17 pages. 6 figures. To match version to appears in Physics Letters

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings

    Predicting Intermediate Storage Performance for Workflow Applications

    Full text link
    Configuring a storage system to better serve an application is a challenging task complicated by a multidimensional, discrete configuration space and the high cost of space exploration (e.g., by running the application with different storage configurations). To enable selecting the best configuration in a reasonable time, we design an end-to-end performance prediction mechanism that estimates the turn-around time of an application using storage system under a given configuration. This approach focuses on a generic object-based storage system design, supports exploring the impact of optimizations targeting workflow applications (e.g., various data placement schemes) in addition to other, more traditional, configuration knobs (e.g., stripe size or replication level), and models the system operation at data-chunk and control message level. This paper presents our experience to date with designing and using this prediction mechanism. We evaluate this mechanism using micro- as well as synthetic benchmarks mimicking real workflow applications, and a real application.. A preliminary evaluation shows that we are on a good track to meet our objectives: it can scale to model a workflow application run on an entire cluster while offering an over 200x speedup factor (normalized by resource) compared to running the actual application, and can achieve, in the limited number of scenarios we study, a prediction accuracy that enables identifying the best storage system configuration
    corecore