12 research outputs found

    Effect of Silicon dioxide coating of acrylic resin surfaces on Candida albicans adhesion.

    Get PDF
    Acrylic resin has been used in the manufacture of prostheses, however, in the oral cavity, this material starts to retain microorganisms capable of causing gingival inflammation due its porosities. The aim of this study was to evaluate the influence of the use of silicon dioxide as a coating layer applied onto acrylic resin, on the adhesion of Candida albicans (Ca). After the incubation period in Sabouraud Dextrose Broth, a total of 1 ml of the Ca suspension was added to plate wells, each well containing a specimen of acrylic resin. The adhesion ability of Ca on acrylic resin was determined by counting colonies. Three groups (n = 6) of acrylic resin were assessed: with polishing (RP); without polishing (RW); with polishing and coating layer of silicon dioxide (RPC). Ca deposited on the surface of the acrylic resin was also observed using Scanning Electron Microscopy (SEM). Statistical assessment by Kruskal-Wallis and Student-Newman-Keuls Method were done (α = 2%). There was significant difference among the groups. The RPC group showed the lowest growth, with an average of 5.59 Log CFU/cm 2 ; there was a statistically significant difference in relation to group RW, which presented a growth of 6.07 Log CFU/cm 2 and to group RP with 5.91 Log CFU/cm 2 (p < 000.1). SEM images demonstrated that in the RP and RPC group, the surface of the resin had greater regularity, and smaller number of microorganisms. The application of silicon dioxide coating on acrylic resin appears to be a promising alternative, and its use can help in reducing the adhesion of Ca in prostheses

    Development and characterization of evening primrose (Oenothera biennis) oil nanoemulsions

    Get PDF
    AbstractEvening primrose (Oenothera biennis L., Onagraceae) seeds oil has great economic importance due to its wide industrial application, mainly for medicines and nutraceutics. However, to our knowledge, it remains almost unexplored regarding development of innovative formulations, such as nanoemulsions. On the present study, required Hydroprophile&#8211;Lipophile Balance of evening primrose seeds oil was determined (HLB 12) and a stable nanoemulsion (Day 1: mean droplet size: 214.3 ± 0.69 nm, polydispersity index: 0.253 ± 0.012. Day 7: mean droplet size: 202.8 ± 0.23 nm, polydispersity index: 0.231 ± 0.008) was achieved. Moreover, pseudo-ternary diagram allowed delimitation of nanoemulsion region, contributing to nanobiotechnology of natural products

    Metabolomic Study of Urine from Workers Exposed to Low Concentrations of Benzene by UHPLC-ESI-QToF-MS Reveals Potential Biomarkers Associated with Oxidative Stress and Genotoxicity

    No full text
    Benzene is a human carcinogen whose exposure to concentrations below 1 ppm (3.19 mg·m−3) is associated with myelotoxic effects. The determination of biomarkers such as trans-trans muconic acid (AttM) and S-phenylmercapturic acid (SPMA) show exposure without reflecting the toxic effects of benzene. For this reason, in this study, the urinary metabolome of individuals exposed to low concentrations of benzene was investigated, with the aim of understanding the biological response to exposure to this xenobiotic and identifying metabolites correlated with the toxic effects induced by it. Ultra-efficient liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (UHPLC-ESI-Q-ToF-MS) was used to identify metabolites in the urine of environmentally (n = 28) and occupationally exposed (n = 32) to benzene (mean of 22.1 ÎŒg·m−3 and 31.8 ÎŒg·m−3, respectively). Non-targeted metabolomics analysis by PLS-DA revealed nine urinary metabolites discriminating between groups and statistically correlated with oxidative damage (MDA, thiol) and genetic material (chromosomal aberrations) induced by the hydrocarbon. The analysis of metabolic pathways revealed important alterations in lipid metabolism. These results point to the involvement of alterations in lipid metabolism in the mechanisms of cytotoxic and genotoxic action of benzene. Furthermore, this study proves the potential of metabolomics to provide relevant information to understand the biological response to exposure to xenobiotics and identify early effect biomarkers

    The Protective Effects of Oral Low-dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice

    No full text
    Aims: Diabetic nephropathy (DN) is one of the major causes of end-stage renal disease, and the incidence of DN is increasing worldwide. Considering our previous report indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg) demonstrated renoprotective, anti-oxidative and anti-apoptotic effects in the C57BL/6J model of diabetic nephropathy, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE-/-). Methods: DN was induced by streptozotocin (100 mg/kg/day, for 3 days) in adult apoE-/-mice. Six weeks later, the mice were divided into the following groups: diabetic apoE-/- mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks), diabetic ApoE-/- mice treated with vehicle (DV) and non-treated non-diabetic (ND) mice.Results: Quercetin treatment caused a reduction in polyuria (~30%), glycemia (~25%), abolished the hypertriglyceridemia and had significant effects on renal function, including decreased proteinuria (~15%) and creatininemia (~30%), which were accompanied by beneficial effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight.Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical and morphological modifications. Thus, this translational study highlights the importance of quercetin as a potential nutraceutical for the management of DN, including in diabetes associated with dyslipidemia
    corecore