36,696 research outputs found

    Coupled quintessence and vacuum decay

    Full text link
    We discuss observational consequences of a class of cosmological models characterized by the dilution of pressureless matter attenuated with respect to the usual a−3a^{-3} scaling due to the decay of vacuum energy. We carry out a joint statistical analysis of observational data from the new \emph{gold} sample of 182 SNe Ia, recent estimates of the CMB shift parameter, and BAO measurements from the SDSS to show that such models favor the decay of vacuum only into the dark matter sector, and that the separately conserved baryons cannot be neglected. In order to explore ways to more fundamentally motivated models, we also derive a coupled scalar field version for this general class of vacuum decay scenarios.Comment: 6 pages, 3 figures, LaTe

    On the equivalence of Lambda(t) and gravitationally induced particle production cosmologies

    Get PDF
    The correspondence between cosmological models powered by a decaying vacuum energy density and gravitationally induced particle production is investigated. Although being physically different in the physics behind them we show that both classes of cosmologies under certain conditions can exhibit the same dynamic and thermodynamic behavior. Our method is applied to obtain three specific models that may be described either as Lambda(t)CDM or gravitationally induced particle creation cosmologies. In the point of view of particle production models, the later class of cosmologies can be interpreted as a kind of one-component unification of the dark sector. By using current type Ia supernovae data, recent estimates of the cosmic microwave background shift parameter and baryon acoustic oscillations measurements we also perform a statistical analysis to test the observational viability within the two equivalent classes of models and we obtain the best-fit of the free parameters. By adopting the Akaike information criterion we also determine the rank of the models considered here. Finally, the particle production cosmologies (and the associated decaying Lambda(t)-models) are modeled in the framework of field theory by a phenomenological scalar field model.Comment: 9 pages, 3 figures, new comments and 8 references added. Accepted for publication in Physics Letters

    A Robust Filter for the BeppoSAX Gamma Ray Burst Monitor Triggers

    Full text link
    The BeppoSAX Gamma Ray Burst Monitor (GRBM) is triggered any time a statistically significant counting excess is simultaneously revealed by at least two of its four independent detectors. Several spurious effects, including highly ionizing particles crossing two detectors, are recorded as onboard triggers. In fact, a large number of false triggers is detected, in the order of 10/day. A software code, based on an heuristic algorithm, was written to discriminate between real and false triggers. We present the results of the analysis on an homogeneous sample of GRBM triggers, thus providing an estimate of the efficiency of the GRB detection system consisting of the GRBM and the software.Comment: Proc. 5th Huntsville GRB Symposiu

    Effective restoration of the U_A(1) symmetry with temperature and density

    Full text link
    We investigate the full U(3)⊗\otimesU(3) chiral symmetry restoration, at finite temperature and density, on the basis of a quark model which incorporates the most relevant properties of QCD in this context: explicit and spontaneous breaking of chiral symmetry and axial UA_A(1) symmetry breaking. A specific lattice-inspired behavior of the topological susceptibility, combined with the convergence of chiral partners, signals the onset of an effective chiral symmetry restoration. The results suggest that the axial part of the symmetry is restored before the possible restoration of the full U(3)⊗\otimesU(3) chiral symmetry can occur. This conclusion is valid in the context of both finite temperature and density.Comment: 5 pages, 2 figures; PRD versio
    • …
    corecore