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The correspondence between cosmological models powered by a decaying vacuum energy density and
gravitationally induced particle production is investigated. Although being physically different in the
physics behind them we show that both classes of cosmologies under certain conditions can exhibit the
same dynamic and thermodynamic behavior. Our method is applied to obtain three specific models that
may be described either as Λ(t)CDM or gravitationally induced particle creation. In the point of view of
particle production models, such cosmologies can be interpreted as a kind of one-component unification
of the dark sector. By using current type Ia supernovae data, recent estimates of the cosmic microwave
background shift parameter and baryon acoustic oscillations measurements we also perform a statistical
analysis to test the observational viability within the two equivalent classes of models and we obtain the
best-fit of the free parameters. By adopting the Akaike information criterion we also determine the rank
of the models considered here. Finally, the particle production cosmologies (and the associated decaying
Λ(t)-models) are modeled in the framework of field theory by a phenomenological scalar field model.
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1. Introduction

The current cosmic acceleration has been evidenced from dis-
tance measurements of type Ia supernovae data [1] and the sim-
plest explanation is to admit the existence of a cosmological con-
stant, Λ, which can be associated to the energy density stored in
the true vacuum state of all existing fields in the Universe. From
the observational point of view, it is well known that Λ provides
a very good description of the observed Universe. Despite its ob-
servational successes, it suffers at least from two problems. First,
and possibly the most serious one is the cosmological constant
problem (CCP). It refers to the fact that the cosmological upper
bound (ρΛ � 10−47 GeV4) differs from theoretical expectations for
the vacuum energy (ρΛ ∼ 1071 GeV4) by approximately 120 orders
of magnitude. The other is known as the coincidence problem and
consists in understanding why ρΛ is not only small, but also of the
same order of magnitude of the energy density of cold dark matter
(CDM) exactly today [2].
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A possible alternative to resolve the cosmological constant
problems described above is to suppose that the vacuum energy
is not a constant but decays into other cosmic components. Phe-
nomenological models with variable cosmological term (decaying
vacuum) have been proposed in literature as an attempt to alle-
viate the cosmological constant problem [3–7] and more recently
the coincidence problem [8–13]. The usual treatment is to assume
that Λ(t) = 8πGρv (t) behaves like a scalar field whose kinetic
term is negligible while its potential energy is coupled to the other
components of the universe thereby producing particles (the decay
products) continuously and slowly. In these models the explanation
for the present smallness of the vacuum energy density is that it
has been decaying during the whole life of the universe, and, as
such, the vacuum energy density is small nowadays because the
Universe is too old.

The running of the vacuum energy density is generically ex-
pected from quantum field theory (QFT) in curved space–times [14,
15]. In this case, the effective QFT action implies that the variation
of ρΛ can be associated with the change of the space–time curva-
ture, whose expression may depend on the specific gravity theory
adopted. Many proposals along these lines, in which the presently
observed value of ΩΛ is a remnant from inflation, were discussed
in the literature (for a recent review see [16]). In the Starobin-
sky model, for instance, the vacuum effective action of a massive
scalar field is calculated by using a conformal representation of the
.
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field action [17] and leads (in the one-loop approximation) to a
non-singular de Sitter stage, as generated in many phenomenolog-
ical decaying vacuum cosmologies [6,18]. Cosmologies with extra
dimensions also suggest that modifications of the Friedmann equa-
tion can mimick a time varying Λ(t)-term scaling as Ha , where a
is a constant index [19]. More recently, the cosmic variation of the
vacuum energy density has also be justified based on the renor-
malization group (RG) approach [20]. Such attempts are collectively
suggesting that dynamical Λ(t)-models provide an interesting pos-
sibility not only to accelerate the Universe but also to solve both
the CC and coincidence problems.

Nevertheless, even in the context of general relativity, there are
other possibilities to explain the present accelerating stage without
dark energy thereby evading the questions related to the cosmo-
logical constant problems [21]. This happens, for instance, when
the matter content of the universe is subjected to some kind of
dissipative process (a kind of cosmic antifriction) that can be ex-
pressed in the Einstein Field Equations (EFE) by the inclusion of an
effective negative pressure [22]. As a consequence, a late time ac-
celerating stage appears naturally with the model providing a new
alternative scenario to confront with the present day astronomical
observations.

Another interesting possibility is the phenomenon of gravita-
tionally induced particle production at the expenses of a time
varying gravitational field. From a microscopic viewpoint it has
been justified after the pioneering works of Parker and collabora-
tors [15]. As discussed by many authors, the positive and negative
frequency of the fields in the Heisenberg picture become mixed
during the universe expansion. As a result, the creation and anni-
hilation operators at one time t1 are linear combinations of those
ones at an earlier time t2, thereby resulting in particle produc-
tion. Qualitatively, one may say that the time varying gravitational
background works like a ‘pump’ supplying energy for the matter
fields (see [23] for particle production in F(R) theories of gravity).
Since the energy of the field is not conserved its action is explic-
itly time-dependent, with the quantization leading generically to
particle production [15,24,25].

Macroscopically, as originally discussed by Prigogine and co-
workers [26] based on non-equilibrium thermodynamics of open
systems, this kind of process can also be described by a nega-
tive creation pressure (see also [27,28]). In this case, by assuming
that dark matter particles are produced by a time varying gravi-
tational field, it is also possible to obtain a late time acceleration
in a universe composed only by pressureless fluids, like baryons
and cold dark matter [29,30]. In the same vein, some authors also
showed that the evolution of an arbitrary ΛCDM model can fully
be mimicked by a baryonic fluid plus creation of CDM particles
(CCDM model) both at background and perturbative levels [31,32].
In the flat case, for instance, the CCDM model has also only one
free parameter (like the standard ΛCDM) which describes the CDM
particle production rate. Therefore, it is simple like the cosmic
concordance model, evolves with the same dynamics, and, more
important, it has only one component filling the dark sector (CDM)
whose observational status is relatively higher than any kind of
dark energy [33].

Recently, Mimoso and Pavón [34] also investigated the thermo-
dynamic behavior of two different classes of cosmologies: (i) a
complete CCDM scenario [35], and (ii) a complete decaying Λ(t)
scenario [36]. The quoted authors concluded that these particu-
lar Λ(t) and CCDM cosmologies are thermodynamically consistent
even when the horizon entropy (during the extreme de Sitter
phases) are taken into account [34].

In this Letter we go one step further by investigating whether
there is a general equivalence between Λ(t)CDM and CCDM cos-
mologies both from a dynamic, as well as, from a thermodynamical
viewpoint. Our basic interest here is to determine what are the
general conditions under which both scenarios can provide the
same cosmological description. As we shall see, there are gen-
eral relations among the physical parameters involving the creation
rate of CCDM cosmologies and the Λ(t) model which may guaran-
tee, from the very beginning, the same macroscopic behavior, even
considering that they are deeply different in the physics behind
them. The equivalence in a perturbative level, i.e. by taking into
account the evolution of the density fluctuations, will be investi-
gated in a forthcoming communication (for a discussion involving
only the CCDM approach see Ref. [32]).

The manuscript is organized as follows. In Section 2 we an-
alyze the dynamic equivalence between the CCDM models and
the decaying vacuum models. The thermodynamic equivalence is
discussed in Section 3. In Section 4 we specialize our results by
considering three distinct decaying vacuum models and the cor-
responding dynamics in CCDM models. In Section 5 we compare
CCDM models with observational results. In Section 6 we interpret
this class of models in terms of the dynamics of an ordinary scalar
field, and, finally, in Section 7, we summarize the basic results.

2. Dynamic equivalence

The Einstein Field Equations relates the dynamic properties of a
given spacetime with its total energy content (in our units 8πG ≡
c = 1)

Gμν = T μν, (1)

where Gμν is the Einstein tensor and T μν is the total energy–
momentum tensor of the cosmic fluid.

In what follows, we will compare in detail two different classes
of models in the framework of a Friedmann–Lemaitre–Robertson–
Walker space–time.

Firstly, we will consider a generic decaying vacuum model
whose thermodynamic behavior was discussed long ago by one of
us [37]. In this case, the EFE reduce to [3–5]:

ρ + Λ(t) = 3
ȧ2

a2
+ 3

k

a2
, (2)

p − Λ(t) = −2
ä

a
− ȧ2

a2
− k

a2
, (3)

where ρ and p are the energy density and the equilibrium ther-
mostatic pressure of the usual cosmic fluid (baryons, radiation and
dark matter) with p = wρ , a is the cosmic scale factor and k is
the parameter of curvature. For simplicity, henceforth it will be
assumed that the decaying vacuum is coupled only with the dom-
inant component.

The decaying vacuum causes a change in the number of parti-
cles of dark matter, so the equation describing particle concentra-
tion has a source term, i.e.,

Nα
;α = ṅ + 3

ȧ

a
n = nΓ. (4)

Here, Γ is the rate of change of the number of particles, n = N/a3

is the particle number density and Nα = nuα is the particle flux.
By combining Eqs. (2) and (3), or more directly, from the total

energy conservation law one finds

ρ̇ + 3
ȧ

a
(ρ + p) = −ρ̇Λ. (5)

Since the vacuum decay is the unique source of particle cre-
ation, we can write

ρ̇Λ = −ζnΓ, (6)

where ζ is a positive phenomenological parameter.
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As remarked earlier, the second class of scenarios to be con-
sidered here are models with gravitationally induced particle pro-
duction, sometimes named CCDM models [29,31]. In this case, the
Friedmann equations take the following form [27–29,31]:

ρ̃ = 3
ȧ2

a2
+ 3

k

a2
, (7)

p̃ + pc = −2
ä

a
− ȧ2

a2
− k

a2
, (8)

where pc (creation pressure) is a non-equilibrium correction term
describing the particle production. From now on, a tilde denotes
the fluid component quantities of the CCDM model in order to dis-
tinguish its values from their possible Λ(t)CDM counterparts.

The particle number density in this case is described by the
equation

Ñα
;α = ˙̃n + 3

ȧ

a
ñ = ñΓ̃ , (9)

where Γ̃ is the rate of particle creation induced by the varying
gravitational field.

By combining Eqs. (7) and (8) it is also possible to obtain the
equation expressing the energy conservation law (uμT μν

;ν = 0)

˙̃ρ + 3H(ρ̃ + p̃ + pc) = 0. (10)

In general the creation pressure can be written as [28]

pc = −α
ñΓ̃

3H
, (11)

where α is a positive phenomenological coefficient related to the
creation process.

In order to obtain the dynamics of decaying vacuum models,
we can combine Eqs. (2) and (3), resulting in

ä

a
+ 


ȧ2

a2
+ 


k

a2
− (1 + w)Λ(t)

2
= 0, (12)

where 
 = (3w + 1)/2. Similarly, for models with matter creation
we can combine Eq. (7) with (8) to give

ä

a
+ 


ȧ2

a2
+ 


k

a2
+ pc

2
= 0. (13)

Now, by comparing Eqs. (12) and (13) it is readily seen that the
condition to a dynamic equivalence is given by:

pc = −(1 + w)Λ(t). (14)

The above expression relates Λ0 or general Λ(t) cosmologies with
the corresponding creation pressure of CCDM models. It is impor-
tant to emphasize that the above condition is quite general and
can be applied regardless of the phenomenological laws adopted
to the decaying vacuum or to the creation rate describing the par-
ticle production.

On the other hand, as discussed in Ref. [27], special attention
has been paid to the simpler process termed “adiabatic” particle
production (see also [29,37]). It means that particles and entropy
are produced in the space–time, but the specific entropy (per par-
ticle) remains constant ( ˙̃σ = 0). In this case, the constant α in
Eq. (11) is equal to (ρ̃ + p̃)/ñ, so that the creation pressure reads1

pc = − (ρ̃ + p̃)Γ̃

3H
= − (1 + w)ρ̃Γ̃

3H
. (15)

1 It should be noticed that fluids endowed with “adiabatic” particle production

satisfy the null energy condition (NEC) only if Γ̃ /3H � 1. All models that will be
discussed in Section 4 satisfy such a condition.
From Eqs. (14) and (15) we find

Λ(t) = ρ̃Γ̃

3H
. (16)

Note that above identification holds regardless of the curvature of
the Universe. By assuming a spatially flat geometry, we have that
ρ̃ = 3H2. Thus

Λ

H2
= Γ̃

H
, (17)

which corresponds to a special case of Eq. (16). In particular if
Γ � H we find that Λ � H2, and, as such, both processes are
negligible in this limit, as should be expected.

3. Thermodynamic correspondence

Given that the dynamic equivalence is guaranteed by condi-
tion (14), or equivalently, by (16) in the case of adiabatic par-
ticle creation, let us now examine the possibility of a complete
thermodynamic equivalence. The thermodynamic behavior of Λ(t)
and particle production cosmologies were discussed long ago (see
Refs. [28,37]), however, in a quite separated way, i.e. with no at-
tempt to determine their possible equivalence.

In order to obtain the thermodynamic description of decaying
vacuum-Λ(t) models one needs to obtain the evolution equations
of the specific entropy (σ = S/N) and temperature (T ) of the cre-
ated component. In this context, the vacuum works like a second
component transferring energy continuously to the matter com-
ponent with the whole process constrained by the second law
of thermodynamics. Following Lima [37], we also assume that its
chemical potential is null (μv = 0) so that the vacuum is a kind
of condensate carrying no entropy. Actually, for a null chemical
potential, the vacuum equation of state (pv = −ρv ) implies that
σv = 0. Under such conditions, the time-comoving derivative of the
entropy flux, which is given by Sα = nσ uα , combined with (4), (6)
and the Friedmann equations implies that

σ̇ + σΓ = Γ

T
(ζ − μ), (18)

where μ denotes the chemical potential of the created particles,
while the temperature T satisfies the following evolution law:

Ṫ

T
=

(
∂ p

∂ρ

)
n

ṅ

n
− Γ

T (
∂ρ
∂T )n

[
T

(
∂ p

∂T

)
n
+ n

(
∂ρ

∂n

)
T

− ζn

]
(19)

(see [37] for more details).
In the case of CCDM models the specific entropy is given by

˙̃σ + σ̃ Γ̃ = Γ̃

T̃
(α − μ̃), (20)

and the temperature follows the same evolution law as in the pre-
vious case [28]

˙̃T
T̃

=
(

∂ p̃

∂ρ̃

)
ñ

˙̃n
ñ

− Γ̃

T̃ (
∂ρ̃

∂ T̃
)ñ

[
T̃

(
∂ p̃

∂ T̃

)
ñ
+ ñ

(
∂ρ̃

∂ñ

)
T̃

− αñ

]
. (21)

Comparing Eqs. (18)–(21) we note that when α = ζ the two pic-
tures are thermodynamically equivalent. In addition, from Eqs. (6)
and (11) we also see that such an equality also implies ρ̇Λ = 3Hpc ,
as should be expected due to the dynamic equivalence [compare
Eqs. (5) and (10)].

Now by considering that the particle creation process in both
pictures is “adiabatic”, some equilibrium relations need to be
preserved. In this case the second terms on right-hand side of
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Eqs. (19) and (21), which correspond to the non-equilibrium con-
tributions, must be identically zero. In this case, it is possible to
show that

α = ζ = ρ + p

n
. (22)

Physically, this relation amounts to saying that (σ̇ = 0). Hence, the
equilibrium relations are preserved only if the specific entropy per
particle of the created particles is constant. This means that

Ṡ

S
= Ṅ

N
= Γ, (23)

an expression valid for both pictures.

4. Unifying the dark sector

As seen previously, in vacuum decay models we must consider
at least two main components, Λ term and dark matter, in which
vacuum is decaying. Now, we will interpret the standard model
and some Λ(t) models that have been discussed in literature in
terms of matter creation models. We will restrict ourselves to late
time behavior, and, as such, we take w = 0.

Firstly, we rewrite Eq. (10) in terms of the interaction rate, i.e.,

˙̃ρ + 3H(ρ̃ − Γ̃ H) = 0. (24)

Generically, for a given Λ(t) model, the corresponding matter cre-
ation model is obtained by combining Eq. (17) with (24) and per-
forming the integration.

4.1. Case 1: Standard cosmic concordance model

Let us first consider the particular case Λ(t) = cte = λ, that cor-
responds to the standard ΛCDM model. In this case we have that

Γ̃ = λ

H
, (25)

where λ is the cosmological constant of the ΛCDM model. Now,
inserting above expression into Eq. (24) and performing the inte-
gration, one finds

ρ̃ = λ + ρ̃m1,0a−3, (26)

where ρ̃m1,0 is a constant with dimension of energy density that
must quantify the current amount of matter that is clustering. We
can substitute the above relation into Eq. (7) in order to obtain an
expression for H as a function of redshift (z), i.e.,

H = H0
[
1 − Ω̃m1 + Ω̃m1(1 + z)3]1/2

, (27)

where Ω̃m1 = ρ̃m1,0/3H0
2. The above equation describes the dy-

namics of a CCDM scenario (CCDM1 in the present notation), that
behaves like the ΛCDM model, a result previously derived by
a different method [31]. Naturally, as discussed in the first sec-
tions, due to the thermodynamic and dynamic equivalence it is
rather difficult to distinguish observationally between CCDM1 and
ΛCDM model both at background and perturbative levels [32].
However, from the theoretical viewpoint, they are quite distinct.
In the ΛCDM model there are two main cosmic components that
evolve independently of each other thereby requiring a fine tun-
ing. In the corresponding CCDM model, in turn, there is only one
component, and so there are no problems of adjusting (for more
details see, e.g., Refs. [31,32,34,35]).
4.2. Case 2: Λ = γ H

This simple phenomenological decaying vacuum law was pro-
posed in Ref. [38], and, recently, discussed in a more general con-
text [39]. As remarked in the introduction, it can also be motivated
e.g. as an intriguing and testable option for describing the present
accelerating Universe, as well as a minimally modified Friedmann
equation emerging from infinite-volume extra dimensions [19].
Note that γ is a dimensional constant (Dimγ ≡ Dim[H]). In this
case we find from Eq. (17) that the creation rate of particles is a
constant, i.e.,

Γ̃ = γ . (28)

Consequently Eq. (24) can integrated to give

ρ̃ = γ 2

3

[
1 +

(
C

a

)3/2]2

, (29)

where C is an integration constant. Now the Hubble parameter can
be written as

H = H0
[
1 − Ω̃m2 + Ω̃m2(1 + z)3/2], (30)

where Ω̃m2 = 1 −γ H0/3H2
0. This parameter quantifies the amount

of matter that is clustering.
According to the second law of thermodynamics and Eq. (23)

we see that Γ � 0. As Γ = γ , it implies that γ > 0.

4.3. Case 3: Λ = c + βH2

The βH2 law was first phenomenologically proposed by Car-
valho et al. in Ref. [5] and has also been extensively studied in
the literature [6,7]. Note that the late time evolution of this model
is like the ΛCDM model at late times, however, the H2 provides
some dynamics even today thereby contributing to the constraints
on the β parameter [36,39]. As it appears, the model can also jus-
tified from first principles based on the renormalization group ap-
proach as describing the low energy physical running of ρΛ(H). In
this context, the RG equation describing the vacuum energy den-
sity can be written as a series expansion in terms of H [40,20,39]:

dρΛ

d ln H2
= 1

(4π)2

∑
i

[
ai M

2
i H2 + bi H4 + ci

H6

M2
i

+ · · ·
]
, (31)

where the sum over masses has been calculated in the one-loop
approximation. The above expansion implies that the running pro-
portional to H2 (plus the additional constant) assumed here is
quite suitable for the late time universe but not for the very early
stages (for more details see [39,16] and Refs. therein).

In this case Eq. (17) gives

Γ̃ = c + βH2

H
. (32)

Inserting the above expression into Eq. (24) and performing the
integration, one finds

ρ̃ = c

1 − β/3
+ ρ̃m3,0a−3+β. (33)

As in case I, we combine above relation with Eq. (7), so that

H = H0
[
1 − Ω̃m3 + Ω̃m3(1 + z)3−β

]1/2
, (34)

where Ω̃m3 = ρ̃m3,0/3H0
2.

At this point, it is also interesting to know the present value
of the particle creation rate for the models discussed here (see
Eq. (16)). By assuming that the CDM particles are neutralinos with
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Fig. 1. The variance 
χ2 as a function of the parameters Ω̃m1 ≡ Ωm1 (left panel) and Ω̃m2 ≡ Ωm2 (right panel). From this analysis, we find Ω̃m1 = 0.282+0.014
−0.014 and Ω̃m2 =

0.449+0.013
−0.013 at 1 σ confidence level.
mass m ∼ 100 Gev, and that ΩΛ0 ∼ 0.7, H0 ∼ 74 km Mpc−1 s−1 as
suggested by the latest measurements [41], it is easy to check that
the present creation rate is [Γ n]today ∼ 10−11 cm−3 yr−1. Such a
rate has not appreciably been changed in the last few billion years
(z < 1) when the Universe started to accelerate powered (in our
description) by the particle production process [31].

To obtain some thermodynamic constraints on the parameter β

of the decaying vacuum relation Λ = c + βH2, let us combine this
result with Eqs. (2) and (5), resulting in

ρm = ρm,0a−3+β. (35)

As ρm = mn and we are assuming that m = constant, we have that
n = n0a−3+β . Replacing n into Eq. (4) and combining the result
with Eq. (23) it is possible to show that

Ṡ = S0βaβ H . (36)

As aβ > 0 and the universe is expanding (H > 0), the second law
of thermodynamics, ( Ṡ � 0), implies that β � 0, neglecting the vac-
uum entropy.

5. Observational comparison

In order to constraint the parameters of the matter creation
model considered here we make use of different data sets. The
primary data set used in this analysis comprises recent SNe Ia
compilation, the so-called Union 2.1 sample, compiled in Ref. [42]
which includes 580 data points after selection cuts.

Additionally, we also use measurements derived from the prod-
uct of the CMB acoustic scale, and from the ratio of the sound
horizon scale at the drag epoch to the BAO dilation scale.

The best fit to the set of parameters s is found from the min-
imization of the function χ2

T = χ2
SNe + χ2

CMB/BAO, where χ2
SNe and

χ2
CMB/BAO correspond to the SNe Ia and CMB/BAO χ2 functions, re-

spectively.

5.1. Results

The results of our statistical analyses are shown in Figs. 1 and 2.
Fig. 1 shows the variance 
χ2 = χ2 − χ2

min at confidence regions
(68.3% CL and 95.4%) for CCDM1 (left panel) and CCDM2 (right
panel). For CCDM1 we find that the likelihood function peak is at
Ω̃m1 = 0.282+0.014

−0.014, therefore, in excellent agreement with obser-

vations. While for CCDM2 the peak is at Ω̃m2 = 0.449+0.013
−0.013. This

shows that a constant creation rate of particles [see Eq. (28)] dur-
ing the cosmic evolution supplies a current value for Ω̃m higher
than the observed.
Fig. 2. The results of our statistical analysis in the plane β − Ω̃m3 for CCDM3. Con-
straints from SNe Ia and CMB/BAO ratio data are shown at 1σ and 2σ confidence
levels.

In Fig. 2, we show the parameter space Ω̃m3 − β for CCDM3.
By marginalizing on the nuisance parameter h (H0 = 100 h km s−1

Mpc−1) we find Ω̃m3 = 0.274+0.014
−0.014 and β = −0.018+0.026

−0.027 at 68.3%
confidence level, with χ2

min = 563.53 and ν = 581 degrees of free-
dom. While the reduced χ2

r ≡ χ2
min/ν = 0.97, thereby showing

that the model provides a very good fit to these data.

5.2. Viability of CCDM models

Now, to compare the CCDM scenarios previously investigated,
we use the Akaike information criterion (AIC), defined as

AIC = −2 lnL+ 2k, (37)

where L is the maximum likelihood and k is the number of model
parameters (see [43–46] for reviews on the background for the use
of this information criterion). As argued in Ref. [43], the AIC pro-
vide an interesting way to obtain a relative ranking of the observa-
tional viability of different candidate models. Thus, the important
quantity in this analysis is the difference 
AICi = AICi − AICmin
calculated over the whole set of scenarios (i = 1, . . . ,n) with the
best-fit model being the one that minimizes the AIC factor.

Table 1 shows a summary of the information criterion results
for a SNe Ia sample and the CMB/BAO ratio data discussed above.
As we can see the best-fit model is the CCDM1 model. Secondly we
have the CCDM3 model, which is compatible with ΛCDM model in
1 σ .
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Table 1
Summary of AIC results.

Model k Ranking 
AIC χ2
min/ν

CCDM1 1 1 0.00 0.97
CCDM2 1 3 33.21 1.03
CCDM3 2 2 1.86 0.97

6. CCDM models and scalar field

As seen previously, matter creation models can explain the cos-
mic acceleration without the introduction of a dark energy com-
ponent. However, it is most desirable to represent them in a field
theoretical language, i.e., in terms of the dynamics of an ordinary
scalar field (φ).

In order to represent the matter creation models in terms of
the dynamics of a scalar field, we replace ρ̃ and p̃tot = p̃ + pc in
Eqs. (7) and (8) by the corresponding scalar field expressions

ρ̃ → ρφ = φ̇2

2
+ V (φ), p̃tot → pφ = φ̇2

2
− V (φ). (38)

Inserting the latter into the Friedmann equations we can sepa-
rate the scalar field contributions and express them in terms of
H and Ḣ , i.e.,

φ̇2 = −2Ḣ, (39)

V = 3H2
(

1 + Ḣ

3H2

)
= 3H2

(
1 + aH ′

3H

)
, (40)

where Ḣ = aH H ′ and prime denotes derivative with respect to the
scale factor. Now, considering that dt = da/aH , Eq. (39) can be in-
tegrated to give

φ =
∫

(−2Ḣ)1/2 dt =
∫ (

−2H ′

aH

)1/2

da. (41)

Having both the expressions for V and φ, it’s easy to combine
them in order to obtain the potential for the scalar field, V (φ),
which represents the model in question.

As an example, let’s apply this procedure to obtain the scalar
field description of the model CCDM3.

In this model the evolution of the Hubble function is given by
Eq. (34). Now, inserting Eq. (34) as well as its derivative (H ′) into
Eq. (41) and integrating we obtain

φ(a) = 1√
3 − β

ln

[√
A3a3−β + 1 − 1√
A3a3−β + 1 + 1

]
, (42)

where A3 = (1−Ω̃m3)/Ω̃m3. Now inserting Eq. (34) and it’s deriva-
tive into Eq. (40) we obtain the potential in terms of the scale
factor, i.e.,

V (a) = 3H2
0

[
1 − Ω̃m3 + Ω̃m3

2
(1 + β/3)aβ−3

]
. (43)

Finally, comparing the equations above we find

V (φ) = D + E cosh(
√

3 − βφ), (44)

where D = 3H2
0(1 − Ω̃m3)(3 − β/3)/4 and E = 3H2

0(1 − Ω̃m3)(3 +
β/3)/4.

Exactly the same procedure can be applied to the models
CCDM1 and CCDM2, so we will present here only the final results.
It’s trivial to obtain that the CCDM1 model can be represented by
a scalar field with the following potential

V (φ) = B
[
3 + cosh(

√
3φ)

]
, (45)
where B = 3H2
0(1 − Ω̃m1)/4. As one may check, this potential cor-

responds to the potential obtained for the model CCDM3 for β = 0.
While for the CCDM2 model the resulting scalar field potential

has the following form

V (φ) = C

8

{
2 + 6 cosh(

√
3φ/2) + [

cosh(
√

3φ/2) − 1
]2}

. (46)

So, as we can see, all these models can be represented by scalar
fields with hyperbolic potentials.

7. Conclusions

In this work we have compared (in the context of the FLRW
metric) the main dynamic and thermodynamic aspects of mod-
els with decaying vacuum (Λ(t)CDM) and gravitationally induced
particle creation (CCDM). In particular, we have established under
which conditions they exhibit the same dynamic and thermody-
namic behavior. Using this equivalence we have reinterpreted the
dark sector in terms of only one cosmic component (CDM). In or-
der to exemplify the method developed here we have found the
CCDM models corresponding to three different classes of decay-
ing vacuum models. All these equivalent CCDM cosmologies can
be represented in terms of a scalar field description whose poten-
tials are given by hyperbolic functions.

By using current data, we have also performed a statistical anal-
ysis and showed that observationally the two pictures (Λ(t)CDM
and CCDM) are very similar. Based on the Akaike information cri-
terion (AIC) we have selected the best-fit and ranked the models
considered here.

It is worth notice that from thermodynamics the energy flow
occurs from vacuum to the cold dark matter component. However,
from an observational view point there is room for an interacting
parameter which favors an energy flow in the opposite direction
[cf. Fig. 2]. Naturally, this result does not affect the dynamic behav-
ior of the models, but, in principle, at least for Λ(t)CDM models, it
may suggest that the chemical potential of the created component
may play a role not considered here [47].

Finally, we stress that in the thermodynamic equivalence dis-
cussed here, the entropy associated to the possible existence of
apparent horizons were not taken into account. Its inclusion is
somewhat natural when a de Sitter phase is present but it can-
not be decided a priori since the solutions must be known (in this
connection see Refs. [34–36]).
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