54,059 research outputs found

    Superlens made of a metamaterial with extreme effective parameters

    Get PDF
    We propose a superlens formed by an ultra-dense array of crossed metallic wires. It is demonstrated that due to the anomalous interaction between crossed wires, the structured substrate is characterized by an anomalously high index of refraction and supports strongly confined guided modes with very short propagation wavelengths. It is theoretically proven that a planar slab of such structured material makes a superlens that may compensate for the attenuation introduced by free-space propagation and restore the subwavelength details of the source. The bandwidth of the proposed device can be quite significant since the response of the structured substrate is non-resonant. The theoretical results are fully supported by numerical simulations.Comment: Accepted for publication in Phys. Rev. B (in press

    A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration

    Full text link
    This article addresses the problem of two- and higher dimensional pattern matching, i.e. the identification of instances of a template within a larger signal space, which is a form of registration. Unlike traditional correlation, we aim at obtaining more selective matchings by considering more strict comparisons of gray-level intensity. In order to achieve fast matching, a nonlinear thresholded version of the fast Fourier transform is applied to a gray-level decomposition of the original 2D image. The potential of the method is substantiated with respect to real data involving the selective identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure

    Magnetic monopole and string excitations in a two-dimensional spin ice

    Full text link
    We study the magnetic excitations of a square lattice spin-ice recently produced in an artificial form, as an array of nanoscale magnets. Our analysis, based upon the dipolar interaction between the nanomagnetic islands, correctly reproduces the ground-state observed experimentally. In addition, we find magnetic monopole-like excitations effectively interacting by means of the usual Coulombic plus a linear confining potential, the latter being related to a string-like excitation binding the monopoles pairs, what indicates that the fractionalization of magnetic dipoles may not be so easy in two dimensions. These findings contrast this material with the three-dimensional analogue, where such monopoles experience only the Coulombic interaction. We discuss, however, two entropic effects that affect the monopole interactions: firstly, the string configurational entropy may loose the string tension and then, free magnetic monopoles should also be found in lower dimensional spin ices; secondly, in contrast to the string configurational entropy, an entropically driven Coulomb force, which increases with temperature, has the opposite effect of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009

    Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport

    Full text link
    Ballistic transportation introduces new challenges in the thermodynamic properties of a gas of particles. For example, violation of mixing, ergodicity and of the fluctuation-dissipation theorem may occur, since all these processes are connected. In this work, we obtain results for all ranges of diffusion, i.e., both for subdiffusion and superdiffusion, where the bath is such that it gives origin to a colored noise. In this way we obtain the skewness and the non-Gaussian factor for the probability distribution function of the dynamical variable. We put particular emphasis on ballistic diffusion, and we demonstrate that in this case, although the second law of thermodynamics is preserved, the entropy does not reach a maximum and a non-Gaussian behavior occurs. This implies the non-applicability of the central limit theorem.Comment: 9 pages, 2 figure
    • …
    corecore