60 research outputs found

    Chemistry of the 8‐Nitroguanine DNA Lesion: Reactivity, Labelling and Repair

    Get PDF
    The 8-nitroguanine lesion in DNA is increasingly associated with inflammation-related carcinogenesis, whereas the same modification on guanosine 3',5'-cyclic monophosphate generates a second messenger in NO-mediated signal transduction. Very little is known about the chemistry of 8-nitroguanine nucleotides, despite the fact that their biological effects are closely linked to their chemical properties. To this end, a selection of chemical reactions have been performed on 8-nitroguanine nucleosides and oligodeoxynucleotides. Reactions with alkylating reagents reveal how the 8-nitro substituent affects the reactivity of the purine ring, by significantly decreasing the reactivity of the N2 position, whilst the relative reactivity at N1 appears to be enhanced. Interestingly, the displacement of the nitro group with thiols results in an efficient and specific method of labelling this lesion and is demonstrated in oligodeoxynucleotides. Additionally, the repair of this lesion is also shown to be a chemically feasible reaction through a reductive denitration with a hydride source

    An approach to the stereoselective synthesis of Sp-dinucleoside phosphorothioates using phosphotriester chemistry.

    No full text
    An approach to the stereoselective synthesis of Sp- dinucleoside phosphorothioates has been investigated which utilizes phosphotriester chemistry. The stereoselectivity of internucleotide bond formation between N4-benzoyl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxycytidine-3'-O-(S2-cyano-e thyl) phosphorothioate (3) and 3'-O-acetylthymidine has been studied using either mesitylenesulphonyl-5-(pyridin-2-yl)tetrazole (MSPy) or 1-mesitylenesulphonyl-3-nitro-1,2,4-triazole (MSNT) as the activating agent. The removal of the cyanoethyl group from the protected dinucleoside phosphorothioate has been studied, and conditions are reported which provide rapid deprotection without concomittant desulphurisation

    Synthesis and properties of dithymidine phosphate analogues containing 3'-thiothymidine.

    No full text
    Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S-phosphorothioamidite (7) by activation with 5-(p-nitrophenyl)tetrazole in the presence of 3'-O-acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) periodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T]) was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphorothioite. Absolute stereochemistry has been assigned to the diastereoisomers of d[Tsp(s)T] by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates

    The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts.

    No full text
    The Escherichia coli RuvC protein resolves DNA intermediates produced during genetic recombination. In vitro, RuvC binds specifically to Holliday junctions and resolves them by the introduction of nicks into two strands of like polarity. In contrast to junction recognition, which occurs without regard for DNA sequence, resolution occurs preferentially at sequences that exhibit the consensus 5'-(A/T)TT/(G/C)-3' (where / indicates the site of incision). Synthetic Holliday junctions containing modified cleavage sequences have been used to investigate the mechanism of cleavage. The results indicate that specific DNA sequences are required for the correct docking of DNA into the two active sites of the RuvC dimer. In addition, using chemically modified oligonucleotides to introduce a hydrolysis-resistant 3'-S-phosphorothiolate linkage at the cleavage site, it was found that, as long as the sequence requirements are fulfilled, the two incisions could be uncoupled from each other. These results indicate that RuvC protein resolves Holliday junctions by a mechanism similar to that exhibited by certain restriction enzymes

    Fluorescent labelling of tRNA and oligodeoxynucleotides using T4 RNA ligase.

    No full text
    3'-O-(5'-phosphoryldeoxycytidyl) phosphorothioate and fluorescent 3'-O-(5'-phosphoryldeoxycytidyl) S-bimane phosphorothioate can be ligated to tRNA by T4 RNA ligase. They are also efficient donors for the enzymatic ligation to oligodeoxynucleotides bearing a 3'-cytidine terminus. Cytidine 3',5'-bisphosphate is also a substrate for the ligation reaction with DNA restriction fragments with a 3'-terminate cytidylic acid residue. Oligo- and polynucleotides with a 3'-phosphorothioate group react readily with electrophiles as exemplified by the reaction with monobromobimane
    corecore