124 research outputs found

    Mesotherapy versus Systemic Therapy in the Treatment of Acute Low Back Pain: A Randomized Trial

    Get PDF
    Pharmacological therapy of back pain with analgesics and anti-inflammatory drugs is frequently associated with adverse effects, particularly in the elderly. Aim of this study was to compare mesotherapic versus conventional systemic administration of nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids in patients with acute low back pain. Eighty-four patients were randomized to receive anti-inflammatory therapy according to the following protocols: (a) mesotherapy group received the 1st and 4th day 2% lidocaine (1 mL) + ketoprofen 160 mg (1 mL) + methylprednisolone 40 mg (1 mL), then on 7th, 10th, and 13th day, 2% lidocaine (1 mL) + ketoprofen 160 mg (1 mL) + methylprednisolone 20 mg (1 mL) (b) conventional therapy group received ketoprofen 80 mg × 2/die and esomeprazole 20 mg/die orally for 12 days, methylprednisolone 40 mg/die intramuscularly for 4 days, followed by methylprednisolone 20 mg/die for 3 days, and thereafter, methylprednisolone 20 mg/die at alternate days. Pain intensity and functional disability were assessed at baseline (T0), at the end of treatment (T1), and 6 months thereafter (T2) by using visual analogic scale (VAS) and Roland-Morris disability questionnaire (RMDQ). In both groups, VAS and RMDQ values were significantly reduced at the end of drug treatment and after 6 months, in comparison with baseline. No significant differences were found between the two groups. This suggests that mesotherapy may be a valid alternative to conventional therapy in the treatment of acute low back pain with corticosteroids and NSAIDs

    Evaluation of telomerase control elements and radiation-inducible Waf1 promoter for the enhancement of targeted radiotherapy in neuroblastoma cells

    Get PDF
    Introduction: Neuroblastoma has a long-term survival rate of only 15%. While patients with early stage disease can be treated with surgical excision of the tumour, those with inoperable disease require intensive treatment. However, little progress has been made in the survival rates of patients with advanced neuroblastoma. Targeted radiotherapy using [1311]meta-iodobenzylguanidine ([131l]MIBG has induced favourable remissions in some neuroblastoma patients when used as a single agent. However, uptake of the radiopharmaceutical in malignant sites is heterogeneous and approximately 15% of neuroblastoma patients are MIBG negative by scintigraphy and therefore do not progress to [131l]MIBG therapy. Therefore, the full potential of this therapy may only be realised by improving the drug accumulation capacity of neuroblastoma cells. One way to achieve this is by the introduction of cDNA of the noradrenaline transporter (NAT) into neuroblastoma cells. NAT is responsible for the intracellular accumulation of [131l]MIBG. In this strategy, the NAT transgene will be under the control of tumour specific promoter sequences such as the telomerase promoters or the radiation- inducible WAF1 promoter. Furthermore, this gene therapy approach could be improved by the use of immunoliposomes as a non-viral DNA delivery system. Aims: The aims of this study were to determine the potency of the telomerase promoters with respect to the NAT transgene expression, and to assess whether the radiopharmaceuticals [131l]MIBG and [211At]MABG could induce the activity of the WAF1 promoter. Finally, the capacity of GD2-targeted coated cationic immunoliposomes to transfer plasmid DNA specifically to GD2-positive neuroblastoma cells was evaluated. Results: Both telomerase promoters (hTR and hTERT) were able to drive the expression of the NAT transgene in neuroblastoma cells. Furthermore, this resulted in enhanced toxicity of the [131l]MIBG and [211At]MABG to the transfected cells, compared to that of untransfected cells. The hTERT promoter displayed the greatest activity for both [131l]MIBG and [211At]MABG treatments. The WAF1 promoter activity was inducible not only by external beam gamma-rays but also by the beta-emitter radionuclide 1311 in the form of [131l]MIBG or by the alpha-emitter radionuclide 211At conjugated to benzylguanidine ([211At]MABG). In vitro estimation of the equivalent radiation dose of both radiopharmaceuticals was performed. This demonstrated that levels of WAF1 promoter activation caused by [1311]MIBG or [211At]MABG were comparable to that by gamma-radiation. Preliminary toxicity experiments showed that, after irradiation, toxicity of [131I]MIBG improved in neuroblastoma cells transfected with the construct containing the NAT cDNA downstream of the WAF1 promoter sequence. The preparation of GD2-targeted coated cationic immunoliposomes, used in this study, successfully encapsulated plasmid DNA, and were specifically bound to and internalised by GD2-positive neuroblastoma cells. Unfortunately, low transfection efficiency indicated limited usefulness of this methodology. Conclusion: Increase in [1311]M1BG or [211At]MABG toxicity was achieved in neuroblastoma cells transfected with the NAT transgene under the control of the hTR or hTERT promoter. If the overexpression of the NAT transgene and the improved toxicity of radiolabelled drugs are confirmed in pre-clinical models, there is potential for therapeutic gain. The WAF1 promoter was activated by both radiopharmaceuticals, and preliminary experiments suggest that pre-exposure to ionizing radiation could increase the cytotoxicity of [1311]M1BG, via WAF1 promoter-controlled overexpression of the NAT transgene. These results together indicate potential for immediate applications in neuroblastoma patients, such as bone marrow purging. The technology of GD2-targeted, coated cationic immunoliposomes has great potential for its target-specificity and internalisation capacity. The low transfection effectiveness observed in this study may be improved with advances in the current methodology. These results suggest that further advances in promoter control and immunoliposomal technology could enable the application of NAT gene transfer in combination with [131I]MIBG targeted radiotherapy

    Immunological responses in patients with tuberculosis and in vivo effects of acetyl-L-carnitine oral administration

    Get PDF
    Tuberculosis (TBC) is characterized by a complex immune response which parallels the clinical course of the disease. In this respect, acquired resistance, delayed hypersensitivity reaction and anergy are the main types of immune reactivity to mycobacterial antigens. In view of the presence of nonspecific and specific immune deficits in TBC patients, a clinical trial was carried out in a group of 20 individuals with active pulmonary TBC by oral administration of acetyl-L-carnitine (ALC). This drug, which has been shown to possess immunomodulating activities, was able to upregulate the T-dependent antibacterial activity in TBC patients after 30 days' treatment, while the same activity decreased in patients receiving placebo only. On the other hand, ALC did not modify serum levels of tumour necrosis factor-α, in the same individuals. This cytokine plays a detrimental rather than beneficial role in TBC pathogenesis. In the light of these data, ALC seems to be a powerful immunomodulator in the course of Mycobacterium tuberculosis infection and other mycobacteriosis

    Targeting proliferating CLL cells with a novel synthetic low density lipoprotein drug delivery system

    Get PDF
    Chronic lymphocytic leukaemia (CLL) currently remains incurable without stem cell transplantation, an option for only the minority of patients. Despite advances in chemotherapy, most patients relapse owing to the persistence of minimal residual disease (MRD). Substantial evidence has accrued to suggest that the tumour microenvironment is central to disease progression in CLL, with the bone marrow (BM) and lymph nodes (LN) acting as sanctuary sites for MRD. Whilst peripheral blood CLL cells are cell cycle arrested, significant rates of clonal proliferation occur in the BM/LN wherein acquisition of deleterious cytogenetic abnormalities such as 17p deletion may arise. Further, CLL cells co-cultured in vitro on stroma with CD154/IL-4 to give a proliferative signal, are chemoresistant to first line therapies. As proliferating cells require lipids for membrane synthesis, we hypothesise that proliferating CLL cells will have greater requirement for low density lipoprotein (LDL) compared to circulating CLL cells, and also that of normal resting lymphocytes providing a potentially differential cellular property to attack. Proof of concept of drug-loaded synthetic (s)LDL nanoparticles has been provided in glioblastoma and CML. We propose that drug loading into sLDL nanoparticles will allow selective targeting of proliferating CLL cells within the BM/LN proliferation centre, will protect drugs from plasma binding proteins, and will ultimately raise intracellular drug concentrations in the protective microenvironmental niche, to overcome chemoresistance. Aims. To determine (a) the extent of sLDL uptake by CLL cells compared to normal; and (b) whether sLDL uptake by CLL cells changes under proliferative conditions mimicking the proliferation centre. This will determine whether proliferating CLL cells have increased sLDL uptake compared to non-cycling CLL cells or normal B lymphocytes. Methods. sLDL uptake was assessed by flow cytometry, measuring the mean fluorescence intensity in the FITC channel owing to the stable incorporation of dioctadecyloxacarbocyanine (DiO) into the formulation. Internalisation was confirmed by deconvolution fluorescence microscopy. Primary CLL and normal donor samples were enriched for CD19+ B-lineage cells by magnetically activated cell sorting. Cells were cultured in media on tissue culture plastic or NT-L mouse fibroblasts with or without CD154/IL4. Lymphoid cells were stained with CellTrace VioletR to track cell division in response to proliferative signals (CD154/IL4 stroma). Results. HG3, a human lymphoblastoid cell line, avidly took up sLDL nanoparticles in a concentration (0-50 ng/mL cholesterol) and time (0.5-24h) dependent manner. Normal donor peripheral blood B-cells and CLL cells cultured on plastic did not actively take up sLDL but maintained their viability even in the highest concen- tration sLDL tested. Actively proliferating CLL cells on CD154/IL4 stroma could be targeted with sLDL unlike their non-cycling counterparts; interestingly even the minor population of cells that had remained undivided on stroma were also found to be sLDL positive. Summary. CLL cells can be selectively targeted by sLDL nanoparticles with respect to their non-cycling counterparts. We next will investigate the in vivo targeting of sLDL which we hypothesise, by virtue of their size, will home to lymphoreticular organs, sanctuary sites for CLL MRD

    Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKC subversion induces up-regulation of PKC II expression in B lymphocytes

    Get PDF
    Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis

    Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure. Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry–based assays. CLL cells were cultured in in vitro prosurvival and proproliferative conditions to mimic microenvironmental signals in the lymphoid organs, to elucidate the mechanism of action of CR8 in quiescent and proliferating CLL cells using flow cytometry, Western blotting, and quantitative real-time PCR. Results: CR8 was 100-fold more potent at inducing apoptosis in primary CLL cells than roscovitine, both in isolated culture and stromal-coculture conditions. Importantly, CR8 induced apoptosis in CD40-ligated CLL cells and preferentially targeted actively proliferating cells within these cultures. CR8 treatment induced downregulation of the antiapoptotic proteins Mcl-1 and XIAP, through inhibition of RNA polymerase II, and inhibition of NF-κB signaling at the transcriptional level and through inhibition of the inhibitor of IκB kinase (IKK) complex, resulting in stabilization of IκBα expression. Conclusions: CR8 is a potent CDK inhibitor that subverts pivotal prosurvival and proproliferative signals present in the tumor microenvironment of CLL patient lymphoid organs. Our data support the clinical development of selective CDK inhibitors as novel therapies for CLL

    A Phase I Trial of Allogeneic γδ T Lymphocytes From Haploidentical Donors in Patients With Refractory or Relapsed Acute Myeloid Leukemia

    Get PDF
    Introduction: We report the results of a phase I clinical trial NCT03790072 of an adoptive transfer of γδ T lymphocytes from haploidentical donors in patients with refractory/relapsed acute myeloid leukemia after lymphodepletion regimen./ Patients and methods: Healthy donor mononuclear cells collected by leukapheresis were consistently expanded to generate products of 109 to 1010 γδ T cells. Seven patients received donor-derived T cell product at doses of 106/kg (n = 3), 107/kg (n = 3), and 108/kg (n = 1)./ Results: Four patients had bone marrow evaluation at day 28. One patient had a complete remission, one was classified as morphologic leukemia-free state, one had stable disease and one had no evidence of response. In one patient, there was evidence of disease control with repeat infusions up to 100 days after first dosing. There were no treatment-related serious adverse events or treatment-related Common Terminology Criteria for Adverse Events grade 3 or greater toxicities at any dose level. Allogeneic Vγ9Vδ2 T cell infusion was shown to be safe and feasible up to a cell dose of 108/kg./ Discussion: In agreement with previously published studies, the infusion of allogeneic Vγ9Vδ2 cells was safe. The contribution of lymphodepleting chemotherapy to responses seen cannot be ruled out. Main limitation of the study is the low number of patients and interruption due to COVID-19 pandemic./ Conclusion: These positive Phase 1 results support progression to phase II clinical trials

    Aromatic and proteomic analyses corroborate the distinction between Mediterranean landraces and modern varieties of durum wheat

    Get PDF
    In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC's profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data

    Aromatic and proteomic analyses corroborate the distinction between Mediterranean landraces and modern varieties of durum wheat

    Get PDF
    In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC’s profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data

    new pre clinical evidence of anti inflammatory effect and safety of a substituted fluorophenyl imidazole

    Get PDF
    Abstract Acute Respiratory Distress Syndrome (ARDS) is an inflammatory condition with high mortality rates, and there is still no pharmacological approach with proven effectiveness. In the past few years, several imidazole small molecules have been developed to treat conditions in which inflammation plays a central role. In the present work, we hypothesize that a novel substituted fluorophenyl imidazole synthetized by our research group would present in vivo anti-inflammatory effect in an ARDS murine model induced by LPS. Results shows that the fluorophenyl imidazole has the ability to inhibit leukocyte migration to the bronchoalveolar lavage fluid and lung tissue of animals challenged intranasally with LPS. Furthermore, this inhibition is followed with reduction in myeloperoxidase activity, nitric oxide metabolites generation and cytokines (TNF-α, IL-6, IL-17, IFN-γ and IL-10) secretion. This effect is at least partly related to the capacity of the fluorophenyl imidazole in inhibit p38 MAPK and NF-κB phosphorylation. Finally, fluorophenyl imidazole showed no signs of acute oral toxicity in the toxicological protocol suggested by OECD 423. Taken together, the results shows that fluorophenyl imidazole is a promising prototype for the development of a novel anti-inflammatory drug in which p38 MAPK and NF-κB plays a pivotal role
    corecore