259 research outputs found

    Progress and status of APEmille

    Get PDF
    We report on the progress and status of the APEmille project: a SIMD parallel computer with a peak performance in the TeraFlops range which is now in an advanced development phase. We discuss the hardware and software architecture, and present some performance estimates for Lattice Gauge Theory (LGT) applications.Comment: Talk presented at LATTICE97, 3 pages, Late

    Status and challenges for the concept design development of the EU DEMO Plant Electrical System

    Get PDF
    The EU DEMO Plant Electrical System (PES) main scopes are to supply all the plant electrical loads and to deliver to the Power Transmission Grid (PTG) the net electrical power generated. The studies on the PES during the Pre-Concept Design (PCD) Phase were mainly addressed to understand the possible issues, related to the special features both of the power generated, with respect to a power plant of the same size, and of the power to be supplied to the electrical loads. For this purpose, the approach was to start the design of the different PES components adopting technologies already utilized in fusion experiments and in Nuclear Power Plants (NPP) to verify their applicability and identify possible limits when scaled to the DEMO size and applied to the specific pulsed operating conditions. This work is not completed, however several issues have been already identified related to the pulsed operation of the turbine generator, the large amount of recirculation power, the very high peaks of active power required for the plasma formation and control, the huge reactive power demand, if thyristor converter technology was adopted to supply the superconducting coils, etc.. The paper gives an overview on the features and scope of the PES and its subsystems, on the main achievements during the Pre-Concept Design (PCD) Phase, on the challenges for the development of the conceptual design in the next framework program and on the plan to face them

    RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities

    Get PDF
    With rising rates of drug-resistant infections, there is a need for diagnostic methods that rapidly can detect the presence of pathogens and reveal their susceptibility to antibiotics. Here we propose an approach to diagnosing the presence and drug-susceptibility of infectious diseases based on direct detection of RNA from clinical samples. We demonstrate that species-specific RNA signatures can be used to identify a broad spectrum of infectious agents, including bacteria, viruses, yeast, and parasites. Moreover, we show that the behavior of a small set of bacterial transcripts after a brief antibiotic pulse can rapidly differentiate drug-susceptible and -resistant organisms and that these measurements can be made directly from clinical materials. Thus, transcriptional signatures could form the basis of a uniform diagnostic platform applicable across a broad range of infectious agents

    apeNEXT: A Multi-Tflops LQCD Computing Project

    Get PDF
    This paper is a slightly modified and reduced version of the proposal of the {\bf apeNEXT} project, which was submitted to DESY and INFN in spring 2000. .It presents the basic motivations and ideas of a next generation lattice QCD (LQCD) computing project, whose goal is the construction and operation of several large scale Multi-TFlops LQCD engines, providing an integrated peak performance of tens of TFlops, and a sustained (double precision) performance on key LQCD kernels of about 50% of peak speed

    Undergraduate Medical Education Reform in Viet Nam for a Primary Health Care Workforce

    Get PDF
    Strong primary health care (PHC) systems require a robust PHC workforce. Traditionally, medical education takes place in academic medical centres that favour subspecialty care rather than PHC settings. This may undervalue primary care as a career and contribute to a shortage of PHC workers. However, designing undergraduate medical education curricula that incorporate early experiences in clinical care delivery at PHC sites remains a challenge, including in many low- and middle-income countries (LMICs). This paper describes how a collaboration between Harvard Medical School and five medical schools in Vietnam, and in-country collaborations among the Vietnamese medical schools, facilitated curricular innovation and co-creation of coursework relevant to PHC through the development of a Practice of Medicine (POM) course. The collaboration implemented a technical assistance strategy consisting of in-person workshops, focused virtual consultations, on-site ‘office hours’, site visits and observations to each of the five medical universities, and immersion trips to support the creation and implementation of the POM course. A pilot program was started at a single site and then scaled nationally using local customisation, experience, and expertise utilising a train-the-trainers approach. As a result, five new POM courses have been developed by five Vietnamese institutions. Fifty Vietnamese faculty received training to lead the POM course development, and 228 community-based preceptors have been trained to teach students at PHC sites. A total of 52 new PHC and community-based clinical training sites have been added, and 3,615 students have completed or are currently going through a POM course. This experience can serve as a model for future academic collaborations to support the development of a robust PHC workforce for the 21st century
    • 

    corecore