2,184 research outputs found

    Subsystem Pseudo-pure States

    Full text link
    A critical step in experimental quantum information processing (QIP) is to implement control of quantum systems protected against decoherence via informational encodings, such as quantum error correcting codes, noiseless subsystems and decoherence free subspaces. These encodings lead to the promise of fault tolerant QIP, but they come at the expense of resource overheads. Part of the challenge in studying control over multiple logical qubits, is that QIP test-beds have not had sufficient resources to analyze encodings beyond the simplest ones. The most relevant resources are the number of available qubits and the cost to initialize and control them. Here we demonstrate an encoding of logical information that permits the control over multiple logical qubits without full initialization, an issue that is particularly challenging in liquid state NMR. The method of subsystem pseudo-pure state will allow the study of decoherence control schemes on up to 6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur

    Three-Qubit Gate Realization Using Single Quantum Particle

    Get PDF
    Using virtual spin formalism it is shown that a quantum particle with eight energy levels can store three qubits. The formalism allows to realize a universal set of quantum gates. Feasible formalism implementation is suggested which uses nuclear spin-7/2 as a storage medium and radio frequency pulses as the gates. One pulse realization of all universal gates has been found, including three-qubit Toffoli gate.Comment: LaTeX, 6 pages, no figures; Submitted to "Pis'ma v Zh. Eksp. Teor. Fiz.

    Molecular and Genetic Evidence for a Virus-Encoded Glycosyltransferase Involved in Protein Glycosylation

    Get PDF
    AbstractThe major capsid protein, Vp54, of chlorella virus PBCV-1 is a glycoprotein that contains either one glycan of ∌30 sugar residues or two similar glycans of ∌15 residues. Previous analysis of PBCV-1 antigenic mutants that contained altered Vp54 glycans led to the conclusion that unlike other glycoprotein-containing viruses, most, if not all, of the enzymes involved in the synthesis of the Vp54 glycan are probably encoded by PBCV-1 (I.-N. Wang et al., 1993, Proc. Natl. Acad. Sci. USA 90, 3840–3844). In this report we used molecular and genetic approaches to begin to identify these virus genes. Comparing the deduced amino acid sequences of the putative 375 PBCV-1 protein-encoding genes to databases identified seven potential glycosyltransferases. One gene, designated a64r, encodes a 638-amino-acid protein that has four motifs conserved in “Fringe type” glycosyltransferases. Analysis of 13 PBCV-1 antigenic mutants revealed mutations in a64r that correlated with a specific antigenic variation. Dual-infection experiments with different antigenic mutants indicated that viruses that contained wild-type a64r could complement and recombine with viruses that contained mutant a64r to form wild-type virus. Therefore, we conclude that a64r encodes a glycosyltransferase involved in synthesizing the Vp54 glycan. This is the first report of a virus-encoded glycosyltransferase involved in protein glycosylation

    Classical model for bulk-ensemble NMR quantum computation

    Get PDF
    We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR sample is described by a probability distribution over the orientations of classical tops, and quantum gates are described by classical transition probabilities. All NMR quantum computing experiments performed so far with three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical model suffers an exponential decrease of the measured signal, whereas there is no corresponding decrease in the quantum description. We suggest that for small numbers of quantum bits, the quantum nature of NMR quantum computation lies in the ability to avoid an exponential signal decrease.Comment: 14 pages, no figures, revte

    Local Realistic Model for the Dynamics of Bulk-Ensemble NMR Information Processing

    Get PDF
    We construct a local realistic hidden-variable model that describes the states and dynamics of bulk-ensemble NMR information processing up to about 12 nuclear spins. The existence of such a model rules out violation of any Bell inequality, temporal or otherwise, in present high-temperature, liquid-state NMR experiments. The model does not provide an efficient description in that the number of hidden variables grows exponentially with the number of nuclear spins.Comment: REVTEX, 7 page

    An optically driven quantum dot quantum computer

    Get PDF
    We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.Comment: 4 figure

    Informing wetland management with waterfowl movement and sanctuary use responses to human-induced disturbance

    Get PDF
    Long-term environmental management to prevent waterfowl population declines is informed by ecology, movement behavior and habitat use patterns. Extrinsic factors, such as human-induced disturbance, can cause behavioral changes which may influence movement and resource needs, driving variation that affects management efficacy. To better understand the relationship between human-based disturbance and animal movement and habitat use, and their potential effects on management, we GPS tracked 15 dabbling ducks in California over ~4-weeks before, during and after the start of a recreational hunting season in October/November 2018. We recorded locations at 2-min intervals across three separate 24-h tracking phases: Phase 1) two weeks before the start of the hunting season (control (undisturbed) movement); Phase 2) the hunting season opening weekend; and Phase 3) a hunting weekend two weeks after opening weekend. We used GLMM models to analyze variation in movement and habitat use under hunting pressure compared with ‘normal’ observed patterns prior to commencement of hunting. We also compared responses to differing levels of disturbance related to the time of day (high - shooting/~daytime); moderate - non-lethal (~crepuscular); and low - night). During opening weekend flight (% time and distance) more than doubled during moderate and low disturbance and increased by ~50% during high disturbance compared with the pre-season weekend. Sanctuary use tripled during moderate and low disturbance and increased ~50% during high disturbance. Two weeks later flight decreased in all disturbance levels but was only less than the pre-season levels during high disturbance. In contrast, sanctuary use only decreased at night, although not to pre-season levels, while daytime doubled from ~45% to \u3e80%. Birds adjust rapidly to disturbance and our results have implications for energetics models that estimate population food requirements. Management would benefit from reassessing the juxtaposition of essential sanctuary and feeding habitats to optimize wetland management for waterfowl

    Quantitative assay for farnesol and the aromatic fusel alcohols from the fungus \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/Όl (0.09 ΌM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations
    • 

    corecore