3,175 research outputs found

    Modeling Course-Based Undergraduate Research Experiences: An Agenda for Future Research and Evaluation

    Get PDF
    Course-based undergraduate research experiences (CUREs) are being championed as scalable ways of involving undergraduates in science research. Studies of CUREs have shown that participating students achieve many of the same outcomes as students who complete research internships. However, CUREs vary widely in their design and implementation, and aspects of CUREs that are necessary and sufficient to achieve desired student outcomes have not been elucidated. To guide future research aimed at understanding the causal mechanisms underlying CURE efficacy, we used a systems approach to generate pathway models representing hypotheses of how CURE outcomes are achieved. We started by reviewing studies of CUREs and research internships to generate a comprehensive set of outcomes of research experiences, determining the level of evidence supporting each outcome. We then used this body of research and drew from learning theory to hypothesize connections between what students do during CUREs and the outcomes that have the best empirical support. We offer these models as hypotheses for the CURE community to test, revise, elaborate, or refute. We also cite instruments that are ready to use in CURE assessment and note gaps for which instruments need to be developed.Howard Hughes Medical InstituteScience and Mathematics Educatio

    Universal microstructure and mechanical stability of jammed packings

    Full text link
    Jammed packings' mechanical properties depend sensitively on their detailed local structure. Here we provide a complete characterization of the pair correlation close to contact and of the force distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations that connect the behavior of particles bearing small forces and those bearing no force but that are almost in contact. By performing systematic investigations for spatial dimensions d=3-10, in a wide density range and using different preparation protocols, we show that these scalings are indeed universal. We therefore establish clear milestones for the emergence of a complete microscopic theory of jamming. This description is also crucial for high-precision force experiments in granular systems.Comment: 11 pages, 7 figure

    Thermodynamic phase-field model for microstructure with multiple components and phases: the possibility of metastable phases

    Full text link
    A diffuse-interface model for microstructure with an arbitrary number of components and phases was developed from basic thermodynamic and kinetic principles and formalized within a variational framework. The model includes a composition gradient energy to capture solute trapping, and is therefore suited for studying phenomena where the width of the interface plays an important role. Derivation of the inhomogeneous free energy functional from a Taylor expansion of homogeneous free energy reveals how the interfacial properties of each component and phase may be specified under a mass constraint. A diffusion potential for components was defined away from the dilute solution limit, and a multi-obstacle barrier function was used to constrain phase fractions. The model was used to simulate solidification via nucleation, premelting at phase boundaries and triple junctions, the intrinsic instability of small particles, and solutal melting resulting from differing diffusivities in solid and liquid. The shape of metastable free energy surfaces is found to play an important role in microstructure evolution and may explain why some systems premelt at phase boundaries and phase triple junctions while others do not.Comment: 14 pages, 8 figure

    The American Religious Landscape and the 2004 Presidential Vote: Increased Polarization

    Get PDF
    Presents findings from a post-election survey conducted in November and December 2004. Explores the polarization between different religions, as well as within the major religious traditions

    Apparatus for determining thermophysical properties of test specimens

    Get PDF
    Apparatus is described for directly measuring the quantity square root of pck of a test specimen such as a wind tunnel model where p is density, c is the specific heat and k is the thermal conductivity of the specimen. The test specimen and a reference specimen are simultaneously subjected to the heat from a heat source. A thermocouple is attached to the reference specimen for producing a first electrical analog signal proportional to the heat rate Q that the test specimen is subjected to and an infrared radiometer that is aimed at the test specimen produces a second electrical analog signal proportional to the surface temperature T of the test specimen. An analog-to-digital converter converts the first and second electrical analog signals to digital signals. These digital signals are applied to a computer for determining the quantity

    Automated electronic system for measuring thermophysical properties

    Get PDF
    Phase-charge coatings are used to measure surface temperature accurately under transient heating conditions. Coating melts when surface reaches calibrated phase-charge temperature. Temperature is monitored by infrared thermometer, and corresponding elapsed time is recorded by electronic data-handling system

    Impulse distributions in dense granular flows: signatures of large-scale spatial structures

    Full text link
    In this paper we report the results of simulations of a 2D gravity driven, dissipative granular flow through a hopper system. Measurements of impulse distributions P(I) on the simulated system show flow-velocity-invariant behavior of the distribution for impulses larger than the average impulse . For small impulses, however, P(I) decreases significantly with flow velocity, a phenomenon which can be attributed exclusively to collisions between grains undergoing frequent collisions. Visualizations of the system also show that these frequently colliding particles tend to form increasingly large linear clusters as the flow velocity decreases. A model is proposed for the form of P(I), given distributions of cluster size and velocity, which accurately predicts the observed form of the distribution. Thus the impulse distribution provides some insight into the formation and properties of these ``dynamic'' force chains.Comment: 4 pages, 4 figure
    • …
    corecore