15 research outputs found

    Pulsatile glucagon has greater hyperglycaemic, lipolytic and ketogenic effects than continuous hormone delivery in man: effect of age.

    Full text link
    The present study aimed at investigating the hyperglycaemic, lipolytic and ketogenic effects of small doses of glucagon delivered continuously or in a pulsatile manner. The study was performed in eight healthy young volunteers (24.2 +/- 1.2 years) and in eight healthy aged subjects (69.4 +/- 2.0 years). In all the subjects, endogenous pancreatic hormone secretion was inhibited by somatostatin and only glucagon was replaced. Consequently, the effects of pulsatile and continuous glucagon delivery were studied in conditions of progressive somatostatin-induced insulin deficiency. In both the young and the aged subjects, pulsatile glucagon delivery resulted in increases in plasma glucose, non-esterified fatty acid, glycerol and beta-hydroxybutyrate levels greater than those observed when the same amount of glucagon was delivered in a continuous manner. The net increases in plasma glucose, glycerol and non-esterified fatty acid levels were similar between the young and the aged subjects when glucagon was infused continuously; in contrast, the rise in plasma beta-hydroxybutyrate in the aged was only about half that observed in the young subjects. Surprisingly, when glucagon was infused in a pulsatile manner, the rises in plasma glycerol, non-esterified fatty acid and beta-hydroxybutyrate levels were all significantly smaller in the aged subjects, while no significant differences were observed in the blood glucose responses. We conclude that, in the presence of somatostatin-induced insulin deficiency, pulsatile glucagon exerts greater effects on blood glucose, plasma non-esterified fatty acid, glycerol and beta-hydroxybutyrate levels than its continuous delivery. In the elderly, the lipolytic and ketogenic, but not the hyperglycaemic, responses to pulsatile glucagon are significantly reduced

    Clinical utility of exercise training in chronic systolic heart failure

    No full text
    The volume of literature attesting to the clinical benefits of exercise training in patients with stable chronic heart failure (CHF) is substantial. Training can improve symptoms and exercise capacity, as well as reducing morbidity, mortality, and rates of emergency hospitalization. These benefits are apparent in all patients with stable CHF, irrespective of age or sex, or the etiology or severity of heart failure. Training regimens for patients with stable, systolic CHF should form part of a comprehensive heart-failure support effort and are best delivered using supervised in-hospital exercise combined with some training at home or in a group setting in community centers. In this Review, the modes and intensity of exercise training, selection of patients, duration of training effects, and other clinical guidance for using this treatment option are discussed

    Vestibular Function in Normal and in Exceptional Conditions

    No full text

    The roles of calcium and phosphoinositides in the mechanisms of α 1-adrenergic and other agonists

    No full text
    corecore