570 research outputs found

    Minimal conductivity of rippled graphene with topological disorder

    Full text link
    We study the transport properties of a neutral graphene sheet with curved regions induced or stabilized by topological defects. The proposed model gives rise to Dirac fermions in a random magnetic field and in the random space dependent Fermi velocity induced by the curvature. This last term leads to singular long range correlated disorder with special characteristics. The Drude minimal conductivity at zero energy is found to be inversely proportional to the density of topological disorder, a signature of diffusive behavior.Comment: 12 pages, no figure

    A cosmological model for corrugated graphene sheets

    Full text link
    Defects play a key role in the electronic structure of graphene layers flat or curved. Topological defects in which an hexagon is replaced by an n-sided polygon generate long range interactions that make them different from vacancies or other potential defects. In this work we review previous models for topological defects in graphene. A formalism is proposed to study the electronic and transport properties of graphene sheets with corrugations as the one recently synthesized. The formalism is based on coupling the Dirac equation that models the low energy electronic excitations of clean flat graphene samples to a curved space. A cosmic string analogy allows to treat an arbitrary number of topological defects located at arbitrary positions on the graphene plane. The usual defects that will always be present in any graphene sample as pentagon-heptagon pairs and Stone-Wales defects are studied as an example. The local density of states around the defects acquires characteristic modulations that could be observed in scanning tunnel and transmission electron microscopy.Comment: Proceedings of the Graphene Conference, MPI PKS Dresden, September 200

    Many-body fermionic excitations in Weyl semimetals due to elastic gauge fields

    Full text link
    We study the single-particle spectrum of three-dimensional Weyl semimetals taking into account electron-phonon interactions that are the result of straining the material. We find that a well-defined fermionic excitation appears in addition to the standard peak corresponding to quasiparticle states as suggested by Landau-Fermi liquid theory. Contrary to the case of Dirac systems interacting via the Coulomb interaction, these satellite peaks appear even at lowest order in perturbation theory. The new excitations are anisotropic, as opposed to the single-particle spectrum, and their behavior is dictated by the Debye frequency, which naturally regulates the electron-phonon coupling.Comment: 10 pages, 2 figures, 5 pages supplemental materia

    Fast and slow edges in bilayer graphene nanoribbons:tuning the transition from band to Mott insulator

    Get PDF
    We show that gated bilayer graphene zigzag ribbons possess a fast and a slow edge, characterized by edge-state velocities that differ due to non-negligible next-nearest-neighbor hopping elements. By applying bosonization and renormalization group methods, we find that the slow edge can acquire a sizable interaction-induced gap, which is tunable via an external gate voltage Vg. In contrast to the gate-induced gap in the bulk, the interaction-induced gap depends nonmonotonously on the on-site potential V
    • …
    corecore