24 research outputs found

    Growth and biofilm formation of Penicillium chrysogenum in simulated microgravity

    Get PDF
    Penicillium sp. are one of the main fungal genera detected on board the Russian Space Station (MIR) and the International Space Station (ISS), demonstrating its ability to grow on the space stations® walls and to maintain growth under microgravity (1-3). As a spore-forming microorganism, Penicillium sp. poses a concern for planetary protection and to human/astronaut health, as its spores, associated with respiratory diseases, can be dispersed through the air (4). Fungal growth on the ISS has shown to promote biodegradation of the spacecraft materials, compromising their integrity. Biofilms are groups of organisms adhered to each other by self-synthesized extracellular polymeric substances, and are ubiquitous in industrial and natural environments (5). It has been reported that Penicillium sp. forms biofilms, which are associated with higher tolerance/resistance to adverse conditions (6). Therefore, biofilm formed on the ISS may have deleterious effects on astronaut’s health and/or on ISS materials. To gain valuable knowledge to control biofilm during long duration spaceflight missions, the NASA-funded project “Characterization of Biofilm Formation, Growth, and Gene Expression on Different Materials and Environmental Conditions in Microgravity” is currently being prepared. Pre-flight testing include: defining and optimizing the growth medium and culturing conditions of P. chrysogenum DSM 1075; characterizing the morphological response of P. chrysogenum growth under simulated microgravity; assessing biofilm formation by P. chrysogenum under different conditions. The study of this fungal strain represents the beginning of a new line of research on board ISS. The knowledge gained can be applicable to a) the safety and maintenance of crewed spacecraft, b) planetary protection, c) mitigation of biofilm-associated illnesses on the crew, as well as on the Earth. Besides, P. chrysogenum is of major medical and historical importance, as it presents the original and present-day industrial source of the antibiotic penicillin, and as an important producer of antifungal proteins and other relevant enzymes

    A Log-Book of Magellan's Voyage, 1519–1522

    No full text

    The effects of space radiation on filamentous fungi

    Get PDF
    Aspergillus was the main fungal genera detected aboard the Russian Space Station (Mir) and the International Space Station (ISS), and fungal growth has been shown to promote biodegradation of the spacecraft materials and compromise life-support systems [1-2]. Moreover, as spore formers, filamentous ungi are a threat to astronauts’ health, and their resistant spores may pose a threat to planetary protection. This makes monitoring and controlling fungal contamination a challenge to be met in the current and future space missions [3-5]. The topic of my master internship at the DLR is: Fungal spore resistance to space radiation and mechanisms by which observed resistance is mediated

    ICEXPOSE:ICY EXPOSURE OF MICROORGANISMS

    Get PDF
    The cold, arid, remotely located and perennially ice covered environment of the Antarctic ice sheet is the most hostile place on Earth. It has long been considered an analogue to how life might persist in the frozen landscape of the major Astrobiological targets of our solar system such as Mars or the Jupiter’s ice-covered moon Europa. In the frame of the ICExPOSE project presented here, the parameters outside the Antarctic Concordia station are utilized as a testbed for performed or planned long-duration space flights and to study the survivability of selected test organisms in an extremely cold (with temperature swings) and highly variable UV environment. The most likely terrestrial organisms to endure such an excursion are extremely tolerant and/or (multi-) resistant microbes-extremophiles- that have evolved mechanisms to withstand such severe conditions. The survivability of a variety of human-, space-flight and extreme-associated microorganisms from all three domains of life (plus viruses) will be investigated using a multiuser exposure facility called EXPOSE that has already been successfully flown on ISS for space exposure durations of up to 2 years. The EXPOSE Mission Ground Reference (MGR) trays are still available and will be reused to accommodate the samples for passive exposure. Microbiological response to single and combined extraterrestrial conditions including simulations of astrobiological relevant environments, like simulated Martian atmospheric conditions, will be tested. The scientific questions addressed in ICEXPOSE are: how is the survival of human-associated and Polar Regions- derived microorganisms compared to (other) environmental extremophilic microorganisms; which physiological state (i.e., cells, spores or colony/biofilms) harbors the weakest or strongest viability and/or mutagenicity detectable after exposure; what type of morphologic and molecular changes can be identified and to which extent does the exposure conditions (e.g. UV-exposed versus UV-shielded) influence the microbial physiology (e.g. pathogenicity, antibiotic resistance, and metabolism) of the exposed species. The results of the ICExPOSE experiment will provide valuable information on: the definition of the physical-chemical limits of life as well as the potential habitability of other planetary bodies; the assessment of the risk of microbial contamination inside human inhabited confined areas and consequent challenges for human health; how to better monitor and control microbial contamination in spaceflight environments, as a key-factor for the success of future space exploration missions; whether specific microorganisms pose possible forward contamination risks that could impact planetary protection policy and will provide complementary results for the two selected future ESA space experiments MEXEM and IceCold

    Cloud-Based Implementation of a SON Radio Resources Planning System for Mobile Networks and Integration in SaaS Metric

    No full text
    In mobile network deployments of growing size, the optimum and fast planning of radio resources are a key task. Cloud services enable efficient and scalable implementation of procedures and algorithms. In this paper, a proof of concept implementation of a cloud-based network planning work pattern using Amazon Web Services (AWS) is presented, containing new and efficient radio resource planning algorithms for 3G, 4G and 5G systems. It extracts configuration and performance data from the network, enabling to accurately estimate cells coverage, identify neighboring cells and optimally plan scrambling codes (SCs) and physical cell identity (PCI) in 3G and 4G/5G networks, respectively. This implementation was integrated and is available in the commercial Metric Software-as-a-Service (SaaS) monitoring and planning tool. The cloud-based planning system is demonstrated in various canonical and realistic Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE) scenarios, and compared to an algorithm previously used by Metric. For a small LTE realistic scenario consisting of 9 sites and 23 cells, it takes less than 0.6 seconds to perform the planning. For an UMTS realistic scenario with 12 484 unplanned cells, the planning is efficiently achieved, taking less than 8 seconds, and guaranteeing no collisions between first order neighboring cells. The proposed concept is proved, as this system, capable of automatically planning 3/4/5G realistic networks of multi-vendor equipment, makes Metric more attractive to the market

    Fungi in space: Implications for astronaut health and planetary protection

    Get PDF
    Aspergillus and Penicillium were the predominant fungal genera detected aboard the Russian Space Station (Mir) as well as the International Space Station (ISS), and fungal growth has been shown to promote biodegradation of spacecraft materials which might compromise life-support systems [1-2]. Moreover, as spore formers, filamentous fungiareathreattoastronauts’health,andtheirresistantsporesmayposeathreattoplanetaryprotection.This, together with their ability to form biofilms, makes monitoring and controlling fungal populations a challenge when it comes to meeting the medical and operation requirements for the current and future space missions [3-5]. The doctoral study work here presented focuses on i) understanding fungal growth and biofilm formation in the space environment, ii) searching for spaceflight-relevant antimicrobial surfaces; iii) assessing fungal radiation resistance, and iv) identifying the potential of these fungi in space biotechnology
    corecore