2 research outputs found

    Severe hematopoietic stem cell inflammation compromises chronic granulomatous disease gene therapy

    Get PDF
    X-linked chronic granulomatous disease (CGD) is associated with defective phagocytosis, life-threatening infections, and inflammatory complications. We performed a clinical trial of lentivirus-based gene therapy in four patients (NCT02757911). Two patients show stable engraftment and clinical benefits, whereas the other two have progressively lost gene-corrected cells. Single-cell transcriptomic analysis reveals a significantly lower frequency of hematopoietic stem cells (HSCs) in CGD patients, especially in the two patients with defective engraftment. These two present a profound change in HSC status, a high interferon score, and elevated myeloid progenitor frequency. We use elastic-net logistic regression to identify a set of 51 interferon genes and transcription factors that predict the failure of HSC engraftment. In one patient, an aberrant HSC state with elevated CEBPβ expression drives HSC exhaustion, as demonstrated by low repopulation in a xenotransplantation model. Targeted treatments to protect HSCs, coupled to targeted gene expression screening, might improve clinical outcomes in CGD

    The New Antitumor Drug ABTL0812 Inhibits the Akt/mTORC1 Axis by Upregulating Tribbles-3 Pseudokinase

    Full text link
    Purpose: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. Experimental design: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. Results: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. Conclusions: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy
    corecore