52 research outputs found

    Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction

    Full text link
    We study domain wall (DW) motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than angular momentum transfer in moving the DW

    Thermal stability and topological protection of skyrmions in nanotracks

    Full text link
    Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this

    Hysteresis of nanocylinders with Dzyaloshinskii-Moriya interaction

    Full text link
    The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyrmion states, and show that these states can be accessed through relevant practical hysteresis loop measurement protocols. As skyrmionic states have yet to be observed experimentally in confined helimagnetic geometries, our work opens prospects for developing viable hysteresis process-based methodologies to access and observe skyrmionic states.Comment: 4 pages, 2 figure

    Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures

    Get PDF
    Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions' magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.Comment: manuscript: 14 pages, 7 figures; supplementary information: 8 pages, 7 figure

    Skyrmions in thin films with easy-plane magnetocrystalline anisotropy

    Full text link
    We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.Comment: 5 pages, 3 figure

    Stable and manipulable Bloch point

    Full text link
    The prediction of magnetic skyrmions being used to change the way we store and process data has led to materials with Dzyaloshinskii-Moriya interaction coming into the focus of intensive research. So far, studies have looked mostly at magnetic systems composed of materials with single chirality. In a search for potential future spintronic devices, combination of materials with different chirality into a single system may represent an important new avenue for research. Using finite element micromagnetic simulations, we study an FeGe disk with two layers of different chirality. We show that for particular thicknesses of layers, a stable Bloch point emerges at the interface between two layers. In addition, we demonstrate that the system undergoes hysteretic behaviour and that two different types of Bloch point exist. These `head-to-head' and `tail-to-tail' Bloch point configurations can, with the application of an external magnetic field, be switched between. Finally, by investigating the time evolution of the magnetisation field, we reveal the creation mechanism of the Bloch point. Our results introduce a stable and manipulable Bloch point to the collection of particle-like state candidates for the development of future spintronic devices.Comment: 8 pages, 4 figure

    Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package

    Get PDF
    Fidimag is an open-source scientific code for the study of magnetic materials at the nano- or micro-scale using either atomistic or finite difference micromagnetic simulations, which are based on solving the Landau-Lifshitz-Gilbert equation. In addition, it implements simple procedures for calculating energy barriers in the magnetisation through variants of the nudged elastic band method. This computer software has been developed with the aim of creating a simple code structure that can be readily installed, tested, and extended. An agile development approach was adopted, with a strong emphasis on automated builds and tests, and reproducibility of results. The main code and interface to specify simulations are written in Python, which allows simple and readable simulation and analysis configuration scripts. Computationally costly calculations are written in C and exposed to the Python interface as Cython extensions. Docker containers are shipped for a convenient setup experience. The code is freely available on GitHub and includes documentation and examples in the form of Jupyter notebooks. Funding Statement: We acknowledge financial support from EPSRC’s Centre for Doctoral Training in Next Generation Computational Modelling, (EP/L015382/1), EPSRC’s Doctoral Training Centre in Complex System Simulation (EP/G03690X/1), CONICYT Chilean scholarship programme Becas Chile (72140061), Horizon 2020 European Research Infrastructure project OpenDreamKit (676541), National Natural Science Foundation of China (11604169), and the Gordon and Betty Moore Foundation through Grant GBMF #4856, by the Alfred P. Sloan Foundation and by the Helmsley Trust
    • …
    corecore