130 research outputs found

    Kif14 overexpression accelerates murine retinoblastoma development

    Get PDF
    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo

    A simple optical coherence tomography quantification method for choroidal neovascularization

    Get PDF
    Purpose: Therapeutic efficacy is routinely assessed by measurement of lesion size using flatmounted choroids and confocal microscopy in the laser-induced choroidal neovascularization (L-CNV) rodent model. We investigated whether optical coherence tomography (OCT) quantification, using an ellipsoid volume measurement, was comparable to standard ex vivo evaluation methods for this model and whether this approach could be used to monitor treatment-related lesion changes. Methods: Bruch's membrane was ruptured by argon laser in the dilated eyes of C57BL/6J mice, followed by intravitreal injections of anti-VEGF164 or vehicle, or no injection. In vivo OCT images were acquired using Micron III or InVivoVue systems at 7, 10, and/or 14 days post-laser and neovascular lesion volume was calculated as an ellipsoid. Subsequently, lesion volume was compared to that calculated from confocal Z-stack images of agglutinin-stained choroidal flatmounts. Results: Ellipsoid volume measurement of orthogonal 2-dimensional OCT images obtained from different imaging systems correlated with ex vivo lesion volumes for L-CNV (Spearman's ρ=0.82, 0.75, and 0.82 at days 7, 10, and 14, respectively). Ellipsoid volume calculation allowed temporal monitoring and evaluation of CNV lesions in response to antivascular endothelial growth factor treatment. Conclusions: Ellipsoid volume measurements allow rapid, quantitative use of OCT for the assessment of CNV lesions in vivo. This novel method can be used with different OCT imaging systems with sensitivity to distinguish between treatment conditions. It may serve as a useful adjunct to the standard ex vivo confocal quantification, to assess therapeutic efficacy in preclinical models of CNV, and in models of other ocular diseases

    A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy

    Get PDF
    Ocular neovascularisation underlies blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. These diseases cause irreversible vision loss, and provide a significant health and economic burden. Biologics targeting vascular endothelial growth factor (VEGF) are the major approach for treatment. However, up to 30% of patients are non-responsive to these drugs and they are associated with ocular and systemic side effects. Therefore, there is a need for small molecule ocular angiogenesis inhibitors to complement existing therapies. We examined the safety and therapeutic potential of SH-11037, a synthetic derivative of the antiangiogenic homoisoflavonoid cremastranone, in models of ocular neovascularisation. SH-11037 dose-dependently suppressed angiogenesis in the choroidal sprouting assay ex vivo and inhibited ocular developmental angiogenesis in zebrafish larvae. Additionally, intravitreal SH-11037 (1 μM) significantly reduced choroidal neovascularisation (CNV) lesion volume in the laser-induced CNV mouse model, comparable to an anti-VEGF antibody. Moreover, SH-11037 synergised with anti-VEGF treatments in vitro and in vivo. Up to 100 μM SH-11037 was not associated with signs of ocular toxicity and did not interfere with retinal function or pre-existing retinal vasculature. SH-11037 is thus a safe and effective treatment for murine ocular neovascularisation, worthy of further mechanistic and pharmacokinetic evaluation

    Environmental assessment of mountain grassland farms with mixed cattle systems: use of bioeconomic simulations

    Get PDF
    Management practices of cattle farming systems must be improved, particularly to increase the systems’ feed self-sufficiency, food production and environmental performances. In mountain areas of the Massif Central (central France), mixed dairy/suckler cattle systems enable farmers to use grassland resources better and cope with economic fluctuations. Our objective was to estimate levels of ecosystem services provided by mixed dairy/suckler cattle systems as a function of the degree of mixing, along with their greenhouse gas emissions and energy use when their operation is optimized on an economic basis. The hypothesis was that mixed dairy/suckler cattle systems allow for controlled use of biomass, with better environmental performances than specialized systems (pure dairy or suckler herd) by maintaining grassland ecosystem services. Five herd-distribution scenarios were simulated using the Orfee bioeconomic optimization model. Environmental performances of the five systems were assessed according to three functional units (i.e., per farm, ha and kg protein produced). Mixed dairy/suckler cattle systems, which enabled larger herds, had higher greenhouse gas emissions per ha than specialized systems. However, because dairy cows produce more protein (milk and beef) than suckler cows, specialized dairy systems had the lowest greenhouse gas emissions and energy use per kg of protein. Specialized dairy systems had less advantage when dairy cows had less access to grassland. For the production of both milk and beef, mixed dairy/suckler cattle systems favour more sustainable use of biomass and tend to maintain a better combination of levels of ecosystem services for livestock production than specialized cattle farming systems

    Chemical Proteomics Reveals Soluble Epoxide Hydrolase as a Therapeutic Target for Ocular Neovascularization

    Get PDF
    The standard-of-care therapeutics for the treatment of ocular neovascular diseases like wet age-related macular degeneration (AMD) are biologics targeting vascular endothelial growth factor signaling. There are currently no FDA approved small molecules for treating these blinding eye diseases. Therefore, therapeutic agents with novel mechanisms are critical to complement or combine with existing approaches. Here, we identified soluble epoxide hydrolase (sEH), a key enzyme for epoxy fatty acid metabolism, as a target of an antiangiogenic homoisoflavonoid, SH-11037. SH-11037 inhibits sEH in vitro and in vivo and docks to the substrate binding cleft in the sEH hydrolase domain. sEH levels and activity are up-regulated in the eyes of a choroidal neovascularization (CNV) mouse model. sEH is overexpressed in human wet AMD eyes, suggesting that sEH is relevant to neovascularization. Known sEH inhibitors delivered intraocularly suppressed CNV. Thus, by dissecting a bioactive compound’s mechanism, we identified a new chemotype for sEH inhibition and characterized sEH as a target for blocking the CNV that underlies wet AMD

    Continuous selections of multivalued mappings

    Full text link
    This survey covers in our opinion the most important results in the theory of continuous selections of multivalued mappings (approximately) from 2002 through 2012. It extends and continues our previous such survey which appeared in Recent Progress in General Topology, II, which was published in 2002. In comparison, our present survey considers more restricted and specific areas of mathematics. Note that we do not consider the theory of selectors (i.e. continuous choices of elements from subsets of topological spaces) since this topics is covered by another survey in this volume
    corecore