4,723 research outputs found

    The use of tethered satellites for the collection of cosmic dust and the sampling of man made orbital debris far from the space station

    Get PDF
    The use of a tethered subsatellite employed downward into the earth's upper atmosphere to an altitude of about 110 km above the earth would eliminate the orbital contamination problem while at the same time affording a measure of atmospheric braking to reduce the velocities of many particles to where they may be captured intact or nearly so with properly designed collectors. The same technique could also be used to monitor the flux of all types of man-made orbital debris out to a distance of more than a hundred kilometers in any direction from the space station. In this way the build up of any debris belt orbiting earth could be determined. The actual collecting elements used for both purposes could be of several different materials and designs so as to optimize the collection of different types of particles with different densities. Stacks of foils, films, plastics, and foams, as well as simple capture cells would be mounted in clusters around the outside of a tethered satellite and protected by iris covers until the tethered had been fully deployed. If the orientation history of the satellite were known the direction of the incoming material could be infered. A chief advantage in deploying such tethered collectors from the Space Station instead of from the shuttle is the ability to maintain deployment of the tether for days instead of hours resulting in much greater yields of intact particles and impact debris

    Cosmic dust collection with a sub satellite tethered to a Space Station

    Get PDF
    The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer than 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made earth orbiting debris in any direction within 100 km or so of the space station

    Cost studies of multipurpose large launch vehicles. Volume 7 - Advanced technology implications Final report

    Get PDF
    Advanced technology implications of multistage, multipurpose large launch vehicle
    corecore