36 research outputs found

    Task demands modulate decision and eye movement responses in the chimeric face test: examining the right hemisphere processing account

    Get PDF
    A large and growing body of work, conducted in both brain-intact and brain-damaged populations, has used the free viewing chimeric face test as a measure of hemispheric dominance for the extraction of emotional information from faces. These studies generally show that normal right-handed individuals tend to perceive chimeric faces as more emotional if the emotional expression is presented on the half of the face to the viewer's left (“left hemiface”). However, the mechanisms underlying this lateralized bias remain unclear. Here, we examine the extent to which this bias is driven by right hemisphere processing advantages vs. default scanning biases in a unique way—by changing task demands. In particular, we compare the original task with one in which right-hemisphere-biased processing cannot provide a decision advantage. Our behavioral and eye movement data are inconsistent with the predictions of a default scanning bias account and support the idea that the left hemiface bias found in the chimeric face test is largely due to strategic use of right hemisphere processing mechanisms

    Neural Prediction of Communication-Relevant Outcomes

    Get PDF
    Understanding and predicting the mechanisms and consequences of effective communication may be greatly advanced by leveraging knowledge from social and cognitive neuroscience research. We build on prior brain research that mapped mental processes, and show that information gained from neuroimaging can predict variation in communication outcomes over and above that associated with self-report. We further discuss how neural measures can complement physiological and other implicit measures. The brain-as-predictor approach can (1) allow researchers to predict individual and population level outcomes of exposure to communication stimuli with greater accuracy and (2) provide a better understanding of the mental processes underlying behaviors relevant to communication research. In this article, we give a detailed description of the brain-as-predictor approach and provide a guide for scholars interested in employing it in their research. We then discuss how the brain-as-predictor approach can be used to provide theoretical insights in communication research. Given its potential for advancing theory and practice, we argue that the brain-as-predictor approach can serve as a valuable addition to the communication science toolbox and provide a brief checklist for authors, reviewers and editors interested in using the approach

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects

    No full text
    Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure

    Secretome of atrial epicardial adipose tissue facilitates reentrant arrhythmias by myocardial remodeling

    No full text
    Background: Epicardial adipose tissue (EAT) accumulation is associated with cardiac arrhythmias. The effect of EAT secretome (EATs) on cardiac electrophysiology remains largely unknown. Objective: The purpose of this study was to investigate the arrhythmogenicity of EATs and its underlying molecular and electrophysiological mechanisms. Methods: We collected atrial EAT and subcutaneous adipose tissue (SAT) from 30 patients with atrial fibrillation (AF), and EAT from 3 donors without AF. The secretome was collected after a 24-hour incubation of the adipose tissue explants. We cultured neonatal rat ventricular myocytes (NRVMs) with EATs, subcutaneous adipose tissue secretome (SATs), and cardiomyocytes conditioned medium (CCM) for 72 hours. We implemented the electrophysiological changes observed after EATs incubation into a model of human left atrium and tested arrhythmia inducibility. Results: Incubation of NRVMs with EATs decreased expression of the potassium channel subunit Kcnj2 by 26% and correspondingly reduced the inward rectifier K+ current IK1 by 35% compared to incubation with CCM, resulting in a depolarized resting membrane of cardiomyocytes. EATs decreased expression of connexin43 (29% mRNA, 46% protein) in comparison to CCM. Cells incubated with SATs showed no significant differences in Kcnj2 or Gja1 expression in comparison to CCM, and their resting potential was not depolarized. Cardiomyocytes incubated with EATs showed reduced conduction velocity and increased conduction heterogeneity compared to SATs and CCM. Computer modeling of human left atrium revealed that the electrophysiological changes induced by EATs promote sustained reentrant arrhythmias if EAT partially covers the myocardium. Conclusion: EAT slows conduction, depolarizes the resting potential, alters electrical cell–cell coupling, and facilitates reentrant arrhythmias

    Noninvasive detection of spatiotemporal activation-repolarization interactions that prime idiopathic ventricular fibrillation

    Get PDF
    A comprehensive understanding of the interaction between triggers and electrical substrates leading to ventricular fibrillation (VF) and sudden cardiac arrest is lacking, and electrical substrates are difficult to detect and localize with current clinical tools. Here, we created repolarization time (RT) dispersion by regional drug infusion in perfused explanted human (n = 1) and porcine (n = 6) hearts and in a computational model of the human ventricle. Arrhythmia induction was tested with a single ventricular extrastimulus applied at the early or late RT region. Arrhythmias could only be induced from early RT regions. Vulnerability to VF increased with RT gradient steepness and with larger areas of early RT, but not with markers on the body-surface electrocardiogram. Noninvasive electrocardiographic imaging was performed in survivors of idiopathic VF (n = 11), patients with frequent premature ventricular complexes (PVCs) but no history of sudden cardiac arrest (n = 7), and controls (n = 10). In survivors of idiopathic VF, RT gradients were steeper than in controls, without differences in the clinical electrocardiogram, consistent with the ex vivo results. Patients with idiopathic VF also showed local myocardial regions with distinctly early-versus-late RT that were more balanced in size than in controls. Premature beats originated more often from the early RT regions in idiopathic VF survivors than in patients with frequent PVCs only. Thus, idiopathic VF emerges from the spatiotemporal interaction of a premature beat from an early-repolarization region with critical repolarization dispersion in that region. Electrocardiographic imaging can uncover the co-occurrence of these abnormalities
    corecore