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Neural Prediction of Communication-Relevant Outcomes

Abstract
Understanding and predicting the mechanisms and consequences of effective communication may be greatly
advanced by leveraging knowledge from social and cognitive neuroscience research. We build on prior brain
research that mapped mental processes, and show that information gained from neuroimaging can predict
variation in communication outcomes over and above that associated with self-report. We further discuss how
neural measures can complement physiological and other implicit measures. The brain-as-predictor approach
can (1) allow researchers to predict individual and population level outcomes of exposure to communication
stimuli with greater accuracy and (2) provide a better understanding of the mental processes underlying
behaviors relevant to communication research. In this article, we give a detailed description of the brain-as-
predictor approach and provide a guide for scholars interested in employing it in their research. We then
discuss how the brain-as-predictor approach can be used to provide theoretical insights in communication
research. Given its potential for advancing theory and practice, we argue that the brain-as-predictor approach
can serve as a valuable addition to the communication science toolbox and provide a brief checklist for
authors, reviewers and editors interested in using the approach.
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ABSTRACT 

 

Understanding and predicting the mechanisms and consequences of effective 

communication may be greatly advanced by leveraging knowledge from social and 

cognitive neuroscience research.  We build on prior brain research that mapped mental 

processes, and show that information gained from neuroimaging can predict variation in 

communication outcomes over and above that associated with self-report. We further 

discuss how neural measures can complement physiological and other implicit measures. 

The brain-as-predictor approach can (1) allow researchers to predict individual and 

population level outcomes of exposure to communication stimuli with greater accuracy 

and (2) provide a better understanding of the mental processes underlying behaviors 

relevant to communication research. In this article, we give a detailed description of the 

brain-as-predictor approach and provide a guide for scholars interested in employing it in 

their research. We then discuss how the brain-as-predictor approach can be used to 

provide theoretical insights in communication research. Given its potential for advancing 

theory and practice, we argue that the brain-as-predictor approach can serve as a valuable 

addition to the communication science toolbox and provide a brief checklist for authors, 

reviewers and editors interested in using the approach. 

 

Keywords: fMRI, EEG, ERP, fNIRS, biological, neuroscience, brain, neuroimaging, 

prediction, media effects 

 

  



Neural prediction of communication-relevant outcomes 

From movie trailers to political ads to health campaigns, companies, governments and 

non-profits spend hundreds of billions of dollars each year in the United States alone to 

produce and distribute media aimed at influencing behavior (“US Total Media Ad Spend 

Inches Up”, 2013).  Yet the effects of campaigns are highly variable and small on 

average (Sethuraman, Tellis, & Briesch, 2011).   Among many factors, such variability is 

likely due, in part, to the fact that mental processes that lead to influence are not directly 

observable.  Furthermore, individuals are often limited in the extent to which they are 

willing or able to report accurately on the processes underlying their thoughts, decisions 

and causes driving their behaviors (Dijksterhuis, 2004; Fazio & Olson, 2003; Nisbett & 

Wilson, 1977; Paulhus, 1986).  A growing body of research suggests that processes that 

precede behavior change are nonetheless represented in the brain.  As such, some of these 

processes may be captured using neuroimaging methods, and used to predict behavioral 

outcomes (Berkman & Falk, 2013).  This brain-as-predictor approach encompasses 

studies that treat measures of brain activity in response to message exposure or other 

communication relevant tasks as: 1) mediators between communication relevant stimuli 

and outcomes, 2) moderators of the relationship between communication relevant stimuli 

and outcomes or 3) direct predictors of communication relevant outcomes.  As will be 

described in greater detail below, the brain-as-predictor approach is a relatively new 

approach with growing bodies of research underway.  Below, we will describe initial 

evidence for its value and how the approach can provide both added predictive capacity 

in parallel with other measurement tools, as well as insights regarding the mechanisms 



underpinning behavior change.  We will provide an overview of what is currently known 

and where the field is going. 

The approach builds on advances in neuroimaging technology that have made it 

possible to examine mental processes that unfold throughout the brain as participants 

complete a wide range of tasks.  Neuroimaging methodologies (e.g., fMRI, EEG/ERPs, 

fNIRS, etc.) allow researchers to examine responses to relevant stimuli (e.g., messages, 

cognitive tasks) in real time during stimulus exposure or task execution.  Furthermore, 

neuroimaging technologies collect data without the need for conscious introspection (as 

would be required of self-report instruments).  Finally neuroimaging can measure implicit 

processing without the need to impose competing cognitive tasks to remove the ability 

for conscious reflection among participants (e.g., through time pressure or other cognitive 

load, as would be desired for many implicit measures, but would then fundamentally 

change the nature of the task being completed). Using neuroimaging technology, 

scientists have identified constellations of neural activity that are associated with many 

basic social, affective and cognitive functions (Ariely & Berns, 2010; Cabeza & Nyberg, 

2000; Lieberman, 2010; Loewenstein, Rick, & Cohen, 2008; Sanfey, Loewenstein, & 

Mcclure, 2006).  In combination with other research at the intersection of communication 

and biology (Beatty, McCroskey, & Pence, 2009; Boren & Veksler, 2011) these insights 

can serve as a foundation for hypothesis generation and testing. 

 We argue that communication scholars can leverage this critical mass of studies in 

social and cognitive neuroscience and neuroeconomics to test relationships between 

communication, the brain, and behavior, and that this in turn can inform both theory and 

practice.  We focus largely on examples from fMRI here, but ultimately, the brain-as-



predictor approach can leverage a wide range of neuroimaging techniques (fMRI, 

structural MRI, DTI, EEG/EPRs, fNIRS, etc.), and can also be applied in parallel with 

other biological paradigms employed by communication scholars1.  Indeed, the 

combination of multiple imaging modalities, along with psychophysiological data 

promises to provide a more comprehensive account of communication effects and 

processes.  In what follows, we review the brain-as-predictor approach (Berkman & Falk, 

2013), provide a step-by-step guide to the approach and then offer selected case examples 

illustrating practical and theoretical advances made possible by the approach.   

What is the brain-as-predictor approach? 

In contrast to neuroimaging studies that manipulate psychological processes and observe 

neural activity as an outcome, the brain-as-predictor approach specifies neural variables 

(e.g., brain activity, connectivity, structure) as mediators, moderators or direct predictors 

of key psychological, psychophysiological or behavioral outcomes (Berkman & Falk, 

2013; Figure 1).  In other words, whereas past research has mapped the location and time 

course of neural activity supporting specific psychological processes, the brain-as-

predictor approach leverages these insights to test specific theoretically-guided 

predictions linking neurocognitive processes and subsequent psychological, physiological 

and behavioral outcomes (see Figure 1 and section below: how to apply).    

The ability to identify theoretically relevant neural predictors builds on past 

decades of research conducted in cognitive neuroscience (Cabeza & Nyberg, 2000), 

social neuroscience (Cacioppo & Berntson, 1992; Cacioppo, 2002; Lieberman, 2010; 

                                                        
1 Comprehensive review of the mechanics of different neuroimaging technologies is 

beyond the scope of this review (interested readers are referred to (Harmon-Jones & 

Beer, 2009)), as is a broader review of biological metrics in communication science 

(interested readers are referred to (Boren & Veksler, 2011; Potter & Bolls, 2011)).   



Ochsner & Lieberman, 2001) and neuroeconomics (Loewenstein et al., 2008; Sanfey et 

al., 2006).  These bodies of research have manipulated psychological variables in the 

laboratory and mapped the resulting neural activity (see Figure 1).  By definition, brain 

mapping studies treat neural activity as a dependent measure, examining correlations 

between psychological processes and their neural correlates – in lay terms, reporting what 

“lights up” (a term that neuroscientists resist). 

The brain-as-predictor approach takes a next step by using this accumulated 

knowledge to make theoretical predictions that link mental processes captured via brain 

activity (or individual differences inferred from brain structure) and use those data as 

mediators, moderators, or direct predictors of psychological, physiological and behavioral 

outcomes that follow, often beyond the confines of the laboratory (Berkman & Falk, 

2013).  In the next section, we describe how to implement the brain-as-predictor 

approach and illustrate some common considerations that researchers employing the 

approach must grapple with through the use of case examples. 

 

How to apply the brain-as-predictor approach to communication science 

Berkman and Falk (2013) outlined three steps to implement the brain-as-predictor 

approach.  Here, we review the three proposed steps, with additional notes of particular 

relevance to applications in communication science (Figure 2).   

Step one: Specification of hypotheses and identification of neural variables 

The first step in the brain-as-predictor approach requires specification of 

hypotheses and identification of neural variables (e.g., functional regions of interest, 

structural regions of interest, connectivity patterns between regions, etc.) that are most 



relevant to each hypothesis.  This further requires defining the specific hypothesized role 

of the neural variable (as a trait or a state measure; as an independent predictor, mediator, 

moderator).  The neural variables selected represent the operationalization of mental 

processes or individual differences.  As noted by Berkman and Falk (2013): “careful 

selection [of neural variables] is critical, akin to selecting a behavioral task or self-report 

measure to tap a construct.  In this sense, the brain-as-predictor approach relies on the 

same scientific logic as any other predictive approach in psychology (e.g., predicting 

behavior change from intention) but with a different independent variable” (p. 48).  

Neuroimaging data can have high test-retest reliability (Miller et al., 2009), depending on 

a number of factors (for a review, see: Berkman, Cunningham, & Lieberman, in press).  

As with any measure, however, consideration should be given to the specific 

measurements being employed and assumptions pertaining to reliability and validity 

should be verified. 

Neural variables as moderators.  As one example of how neural variables can be 

selected to operationalize specific cognitive processes, recent work in our laboratory 

examined how cognitive control and interpersonal communication variables interact to 

produce risk-taking in a driving context among adolescent males (Cascio et al., 2014).   

Our primary neural variable was activity within brain regions that have been 

demonstrated in many cognitive neuroscience studies to support a specific form of 

cognitive control—response inhibition.  Response inhibition involves overriding an 

otherwise prepotent habit or impulse, and individuals vary in the extent to which they 

recruit the core set of brain regions that facilitate successful response inhibition (Cascio 

et al., 2014).  We collected information about such individual differences during a 



baseline neuroimaging session in which participants engaged in a cognitive control task 

that requires response inhibition.  We collected our primary communication variables and 

behavioral outcome data in a driving simulator session that occurred a week following 

the neuroimaging session.  During that session, each participant drove alone and with a 

peer (confederate) passenger who subtly communicated risky or cautious norms before 

the drive.   

We examined how peer norms expressed by confederate passengers (cautious versus 

risky) interacted with individual differences in response inhibition activity during the 

baseline fMRI cognitive control task to predict risk-taking in the driving context.  We 

found that adolescents showing stronger activation in brain regions linked to response 

inhibition demonstrated safer driving behaviors in the presence of a peer who 

communicated cautious norms (compared to solo driving), but not in the presence of a 

risky peer (compared to solo driving). These data emphasize the importance of subtly 

communicated social cues in shaping the use of potentially protective cognitive control 

resources during decision-making in adolescents (or the role of neural resources in 

responding to different types of social situations).  Furthermore, from a practical 

standpoint, neural activity predicted an additional 10.9–22.8% of the variance in risk 

taking behavior in the presence of cautious peers, beyond what was explained by 

participants’ solo driving behavior, self-reported susceptibility to peer influence, and a 

number of other covariates.  More broadly, this example illustrates how neural variables 

can be selected to tap a specific cognitive construct (variation in cognitive control 

resources), as well as how such a construct can be treated as a moderator of the 

relationship between situational/ environmental factors (in this case the implicit 



communication of risk versus cautious preferences) and behavioral outcomes. 

Neural variables as mediators.  Neural data can also be treated as a mediator of 

the relationship between a communication manipulation and behavioral outcomes at the 

level of individual behavior and population level responses to campaigns.  For example, 

although they did not formally test mediation, Chua and colleagues (2011) hypothesized 

that tailoring health messages to specific individuals might increase the extent to which 

messages were processed as self-relevant, and that this in turn might predict message-

consistent behavior change.  To test this hypothesis, they first identified neural regions, 

including medial prefrontal cortex (MPFC), associated with self-related processing using 

a well-validated task that compares neural activity during judgments that do or do not 

require self-related thought (a ‘self-related processing localizer task’).  Next, they 

examined neural activity within the “self regions” as participants were exposed to tailored 

and untailored health messages.  Their data suggest that one way in which tailoring 

messages drives behavior change is by increasing the degree of self-related processing 

(which was greater in response to tailored messages, compared to untailored messages), 

which in turn predicts behavior change; in this case, though mediation was not formally 

tested, brain activity is conceptually treated as a mediating variable between the 

manipulation and outcome.   

Likewise, our lab has observed that neural activity in regions of MPFC selected to 

operationalize a similar form of ‘self-related processing’ in response to anti-smoking 

messages predicts up to 20% of the variance in participants’ behavior change, beyond 

that predicted by combinations of participants’ self-reports of intentions to quit, self-

efficacy to quit, ability to relate to the messages, and risk beliefs, among other measures 



(Falk et al., 2010, 2011; Cooper et al., in press); we have argued that increasing neural 

activity in brain regions implicated in self-related processing might serve as a mechanism 

driving behavior change in response to health messages.   

These data are suggestive of one mechanism (self-related processing) that might 

link communication exposure and behavior change.  Existing research in this area, 

however, has largely be restricted to observational studies that cannot rule out the 

possibility that communication exposure is not necessarily causing behavior change. This 

limitation stems largely from the high cost of fMRI research, which has limited 

researchers’ ability to collect between subjects control groups.  In other words, it is 

possible that the putative self-related processing observed in response to anti-smoking 

messages is a proxy for receptivity to the idea of quitting more broadly and that those 

smokers who show the greatest response to the anti-smoking messages presented would 

have quit or reduced their smoking, even in the absence of intervention.  In our lab, we 

have attempted to address this threat to validity in several ways—for example, Falk et al. 

(2011; introduced above) selected smokers who all had a similar and strong intention to 

quit smoking; hence, variability in neural response is not accounted for by different levels 

of quit intentions.  Cooper et al. (in press) took an additional step by demonstrating that 

activity within the sub-region of MPFC localized to be engaged in “self-related 

processing” was only predictive of behavior change in response to exposure to anti-

smoking media—neural activity in the same brain region during a task that involved self-

reflection outside of the smoking context did not predict behavior change.  Thus although 

the data remain correlational and this analysis doesn’t resolve all concerns, Cooper’s 

results demonstrate that the predictive MPFC response is specific to the target media 



stimulus.  Finally, in recent work, we have randomly assigned participants to conditions 

designed to increase or decrease levels of self-related processing and consequent MPFC 

activity during exposure to health messages.  This activity, in turn, predicts message 

consistent behavior change (Falk et al., under review).  Beyond work in our lab, funding 

agencies and research groups are increasingly prioritizing sample sizes and study designs 

that allow for stronger inferences.   

Traversing different levels of analysis, research teams have also examined effects 

of different message types on neural responses of small groups of participants as 

predictors of the behavior of larger groups of people.  For example, neural responses 

within MPFC in relatively small groups of participants have been shown to forecast the 

population level success of different anti-smoking messages in driving calls to smoking 

quit lines (Falk et al., 2012) and generating email traffic to a quit website (Falk et. al., 

under review).  In these studies, neural activity within MPFC assessed in relatively small 

groups of people in response to anti-tobacco messages was aggregated to predict 

population response to those ads.  In comparison to the self-report ratings of the 

individuals from the smaller groups, neural activity in MPFC added significant predictive 

value in both studies.  Similar methods have been used to predict population level sales 

data for songs (Berns & Moore, 2012), perceived effectiveness of anti-drug messages 

(Weber, Huskey, Mangus, Westcott-Baker, & Turner, in press), and social media 

response to television content (Dmochowski et al., 2014).  These studies differ markedly 

from those described above in that they treat the message (or other communication 

content) as the unit of analysis, and compare aggregated neural activity across multiple 

individuals as predictors of population level behaviors that presumably result from 



campaign exposure.  This approach suffers from the common limitation described by 

communication scholars that “isolation of the independent effects of mass media 

campaigns is difficult” (Wakefield, Loken & Hornik, 2010, p. 1268), however the use of 

randomized field experiments and increased ability to tightly track behaviors in the 

context of digital campaigns can help alleviate some of these limits (for one example, 

see: Falk et al., under review).    

Neural variables as direct predictors of communication outcomes.  In addition to 

specifying neural variables as moderators of the effects of communication variables or 

mediators of the effects of communication variables on behavioral outcomes, neural 

activity can also be conceptualized as direct predictor of communication behaviors. In 

these cases, neural activity is often operationalized in terms of individual differences that 

affect communication outcomes.  For example, in recent work Falk, Morelli and 

colleagues (2013) hypothesized that the tendency to engage brain systems associated with 

considering the mental states of others might predict more effective retransmission of 

ideas, which they termed the ‘idea salesperson effect’.   They found that individual 

variation in their hypothesized ‘perspective taking regions’ during exposure to a set of 

novel ideas was positively associated with the degree to which each participant was later 

successful in communicating and recreating his or her own preferences in another group 

of participants.   

O’Donnell and colleagues (in press) followed up on this work using a brain-as-

predictor framework, treating neural activity within the putative perspective taking 

regions during exposure to a different set of ideas as a predictor of the extent to which 

participants used social language in subsequently communicating their ideas.  The team 



argues that “our brains are sensitized to social cues, such as those carried by language, 

and to promoting social communication.”  They suggest that neural activity in 

perspective taking regions provides a way to conceptually bridge findings from 

communication science, sociolinguistics and neuroscience about how individuals process 

incoming ideas and subsequently retransmit them to others.  As may be clear from this 

example, even studies that treat neural activity as direct predictors of communication 

behavior often rely on an incoming stimulus to elicit the target neural activity, hence 

blurring the line between treating the brain as a mediator or direct predictor.   

 Specifying region(s) of interest (ROIs).  The utility of each of the model types 

described above hinges on appropriate operationalization of constructs, often through 

selection of neural regions of interest (ROIs).  Depending on the research question and 

hypotheses it may be most appropriate to select regions of interest in a number of 

different ways.  As with several of the examples described above (e.g., Cascio et al., 

2014; Falk, Morelli et al., 2013), one common approach is to select neural regions 

anatomically based on a review of prior literature on the construct(s) of interest.  This 

approach promotes standardization across studies to the extent that anatomical regions 

are well defined.  An anatomical atlas can be employed to define the region of interest.  

Some major limitations of this approach include that some regions of interest may not be 

well defined anatomically and/or may cover large swaths of cortex that are less specific 

than would be desired for the brain-as-predictor approach.  Related to the latter point, 

individual anatomical regions of interest are likely to be relatively unselective for specific 

mental processes (i.e., a large anatomical ROI is likely to support multiple mental 

processes); hence when using anatomical ROIs, it may be desirable to consider networks 



of regions that are known to collectively support specific mental processes (Poldrack, 

2006).    

A second common approach that addresses some of the limitations noted above is 

to select neural regions functionally, identifying neural regions that are associated with a 

manipulated psychological process of interest in past work, or within an independent task 

collected in the same study.  Functional regions of interest do not necessarily conform to 

specific anatomical boundaries (i.e., they may cross anatomical boundaries or be 

restricted to sub-regions of an anatomically defined region).  

Functional ROIs can be identified using neural regions identified in a prior group 

of participants—termed a ‘test/validate’ approach.  This is the approach taken by Falk 

and colleagues (2011; described above) to predict smoking behavior change in response 

to anti-smoking messages.  In a prior study, the team had identified neural regions 

associated with behavior change in the context of exposure to messages promoting 

sunscreen use (Falk et al., 2010).  Neural activity within these same brain regions was 

then examined as a new group of smokers were exposed to anti-tobacco messages, and 

that activity was used to predict changes in individual smoking behavior in the month 

following exposure (Falk et al., 2011) as well as population level responses to sub-groups 

of the ads (Falk et al., 2012).  A major advantage of the test-validate approach is that, as 

the name implies, is provides validation of previously observed brain-behavior 

relationships.  The approach requires resources to conduct multiple studies or 

collaboration across research teams. 

Another way to identify functional ROIs is to use researcher curated (e.g., Salimi-

Khorshidi, Smith, Keltner, Wager, & Nichols, 2009; Wager, Lindquist, Nichols, Kober, 



& Van Snellenberg, 2009) or automated (e.g., Yarkoni, Poldrack, Nichols, Van Essen, & 

Wager, 2011) meta-analytic results that combine results from multiple studies of the 

psychological process of interest to identify regions of interest.  This is the approach 

taken by Cooper and colleagues (in press).  In addition to the team’s goal to link self-

related processing with behavior change (described above), Cooper and colleagues were 

also interested in the economic notion of positive valuation in understanding how people 

process health messages (Figure 2).  They noted that “many studies in the nascent field of 

neuroeconomics have demonstrated that an area of the ventral MPFC plays a key role in 

representing the personal, or subjective, value of many types of stimuli during decision-

making”.   They hypothesized that a similar common value signal might also respond to 

the value of ideas in health messages, and hence predict behavioral responses to those 

health messages.  To test this hypothesis, the team built on a meta-analysis of studies that 

identified brain regions implicated in computing the value of stimuli ranging from money 

to material goods to social rewards.  They reasoned that positive valuation of ideas 

contained in a PSA might make use of the same neural systems that compute value more 

generally, which might in turn predict behavior change.  To test this hypothesis, they 

examined neural activity within a meta-analytically defined valuation region of interest as 

smokers were exposed to anti-smoking messages.  Consistent with their hypothesis, 

neural activity within this meta-analytically defined value-computation ROI did 

generalize to predicting health behavior change.  These data are consistent with the idea 

that assessing and acting on health messages may make use of a more general mechanism 

in the brain that computes value of stimuli with respect to one’s current goals and 

motivations.  One limitation of this approach is that it requires a substantial number of 



prior studies. In cases where such a body of literature exists, however, it can be a very 

powerful approach allowing researchers not only to define functional ROIs, but also 

quantitatively assess the likelihood of specific mental functions ascribed to the ROI 

(Yarkoni et al., 2011; see also section below on reverse inference).  

Functional ROIs can also be identified using an independent task within the same 

group of participants (referred to as a “localizer task”; see Saxe et al., 2006).  For 

example, Chua and colleagues’ (2011) study of anti-smoking messages (described above) 

is a good example of the use of a localizer task to identify regions of interest.  The 

research team first used an independent, well-validated task to identify neural regions that 

were more active during judgments requiring self-reflection compared to judgments that 

did not require self-reflection.  They next examined neural activity within those 

functionally defined “self” regions as participants were exposed to quit-smoking 

messages.  Finally, they used the neural activity during the smoking messages in the 

localized “self” regions as the primary predictor of later smoking outcomes.  Major 

limitations of this approach are the increased costs (in terms of scanner time and 

participant burden).  This approach, however, offers the ability to identify person-specific 

ROIs that can support somewhat stronger inferences about the function of selected ROIs, 

and requires less cumulative data than the meta-analytic approaches advocated above.  

In the context of communication science, some brain-as-predictor hypotheses will 

pertain to the relationship between well-mapped cognitive, affective and social processes 

(e.g., self-related processing) during communication-relevant tasks (e.g., media exposure) 

and subsequent behavioral outcomes (e.g., health or political behaviors).  By contrast, 

some key questions in communication science will build on specific theories or questions 



that are not well mapped yet in social and cognitive neuroscience or neuroeconomics.  In 

these cases, brain mapping steps, or the use of well-thought-through localizer tasks, may 

still be necessary to identify regions of interest.  

Step two: Data collection 

Once hypotheses have been specified, the second step in the brain-as-predictor 

approach is data collection. In this step, relevant neural data (e.g., functional activity 

during a task, structure of specific brain regions) are collected within the laboratory and 

subsequent psychological, physiological, and/or behavioral data are collected, often 

longitudinally.  A review of the resources needed to collect fMRI data and issues that 

arise and require attention in communication science can be found from Weber and 

colleagues (this volume); resources describing methods and analysis considerations for 

three potentially useful types of neuroimaging to communication research (fMRI, ERP, 

fNIRS) can also be found in our Appendix.   

As noted above and covered in more depth elsewhere (e.g., see Harmon-Jones & 

Beer, 2009), successful acquisition of brain data carries non-negligible costs, constraints 

and expertise requirements that are not specific to the brain-as-predictor approach (see 

Weber and colleagues, this volume).  Beyond the methodological considerations covered 

in more general resources (that focus on brain variables as dependent measures), the 

brain-as-predictor framework requires not only acquisition of neural data, but also further 

acquisition of subsequent psychological, physiological or behavioral outcome data.  This 

is one aspect that makes the approach particularly suited to communication research-- 

communication scholars are adept at identifying, measuring and connecting individual 

level and large-scale behaviors.  For example, methods developed to indirectly assess 



exposure to media smoking and drinking (Sargent, Worth, Beach, Gerrard, & Heatherton, 

2008) could be combined with neural data specified as either a mediator or moderator of 

key behavioral outcomes of interest (e.g., smoking initiation).  Thoughtful selection of 

subsets of participants in the context of related larger-scale representative studies can also 

maximize the value of this type of work (Falk et al., 2013) to both communication 

science and neuroscience.  In parallel with its advantages, however, the brain-as-predictor 

approach is also often more labor intensive than typical brain mapping (because of the 

requirement to collect data longitudinally). 

Step three: Using neural data as a direct predictor, mediator or moderator in statistical 

models 

 In the third step of the brain-as-predictor approach, neural, physiological, or 

behavioral data are combined in statistical models that specify the brain as a direct 

predictor, mediator or moderator of relevant outcomes.  Convergent validity between 

neural data and other measures (e.g., self-report survey results, other biological measures) 

can help establish links between measures that are theoretically predicted to overlap.  In 

parallel, direct comparison between variance explained by neural data and other data can 

establish the degree to which the brain adds value by explaining variance in key 

outcomes that are difficult to predict otherwise.   

From a practical standpoint, neural measures can be conceptualized in a similar 

manner to other manipulated or individual difference predictor variables in the social and 

behavioral sciences.  For example, parameter estimates of neural activity from a priori 

specified regions of interest during a target psychological task can be extracted, resulting 

in one summary value representing average activity within each specified region, during 



key task conditions, for each participant.  Similar summary measures can be constructed 

relevant to structural features of the brain (e.g., grey-matter volume in specific regions of 

interest) thought to reflect longer term life circumstances and biological factors such as 

genes, functional and structural connectivity between different neural regions that may 

alter the way that cognitive processes unfold and relate to one another, etc. 

 

Using the brain-as-predictor approach to test theories in communication science  

Successful execution of the three steps above allows testing of theoretical relationships 

between neurocognitive processes and outcomes.  Below, we provide selected examples 

of how the brain-as-predictor approach can help address theoretical debates and 

potentially build knowledge relevant to long-standing questions in communication 

science. Of course, these examples are only a few of many possible applications. 

What are the precursors of message-driven behavior change?  As described in 

several examples above, the brain-as-predictor approach has been most widely applied to 

studies of message-driven health behavior change.  Well-established theories of 

persuasion and behavior change have focused heavily on reasoning and cognitive beliefs 

as precursors of message-consistent behavior change (Ajzen & Fishbein, 2005; Petty, 

Priester, & Brinol, 2002).  Several recent brain-as-predictor studies extend these theories 

by highlighting a central role of neural activity within brain regions such as the MPFC, 

implicated in self-related processing (Denny, Kober, Wager, & Ochsner, 2012; 

Lieberman, 2010) and subjective value computation (Bartra, McGuire, & Kable, 2013).  

As introduced above, at the individual level, Falk and colleagues (2010) found that neural 

responses within MPFC-- to sunscreen public service announcements (PSAs) predicted 



21% of the variance in sunscreen behavior change in the week following exposure to the 

PSAs, above and beyond changes in participants’ self-reports of attitudes toward 

sunscreen use and intentions to increase their sunscreen use.   

In follow up work described above, the team found that neural responses within 

MPFC explained smokers’ reductions in smoking behavior following exposure to anti-

smoking PSAs, above and beyond those participants self-reported intentions, self-

efficacy, and ability to relate to the PSAs (Falk et al., 2011).  Furthermore, as described 

above, the team specifically localized the effects to sub-regions of MPFC implicated in 

self-related processing and valuation, and demonstrated that the effects were specific to 

activity during the PSAs and not individual differences in general reactivity within MPFC 

(Cooper, Tompson, O’Donnell, & Falk, in press).  In addressing how these neural 

findings can translate to message design, as described above, MPFC activity can be 

increased by intervention components that increase self-related processing, such as 

message tailoring (Chua et al., 2011).  Recent studies described above also suggest that 

neural data may be useful in identifying messages that are later most effective in 

producing population level behavior change, despite not being identified through 

participant self-reports (e.g., Falk et al., 2012; under review).  

Taken together, data linking MPFC responses to real-world outcomes have 

strengthened our understanding of one pathway through which information from the 

media may interact with psychological processes to influence behavior– the form of self-

related processing and valuation captured by MPFC are peripherally treated by current 

persuasion theories, but not given central importance.  These studies have also begun to 

demonstrate how MPFC activity can be altered to increase the effectiveness of 



interventions.  These data highlight two benefits to the brain-as-predictor approach in the 

study of media effects—1) the ability to predict variance beyond what is explained by 

certain self-report measures, and 2) evidence supporting links between key psychological 

mechanisms stimulated by message exposure (e.g., self-related processing and valuation) 

and prediction of key behavioral outcomes. 

Extending the brain-as-predictor approach to further integrate with theories of 

persuasion, Weber and colleagues (in press) examined neural responses to anti-drug 

messages in high and low drug-risk individuals. Combining insights from the elaboration 

likelihood model (ELM; Petty & Cacioppo, 1986), the activation model of information 

exposure (AMIE; Donohew, Palmgreen, & Duncan, 1980), and the limited capacity 

model of motivated mediated message processing (LC4MP; Lang 2009), Weber and 

colleagues manipulated the argument strength and message sensation value (MSV) of 

anti-drug messages.  They observed an interaction between argument strength and 

message sensation value in predicting low-risk participants’ effectiveness ratings, 

however, high risk participants consistently rated messages as ineffective regardless of 

content (consistent with counterarguing).  Despite the lack of variability (and hence 

predictive capacity) in the high risk participants' self-reports, the team did observe 

variability in neural processes likely associated with executive function and social 

cognition (among other functions) that were not apparent from the high-risk participants’ 

self-reports, and these neural data went on to predict the effectiveness ratings for the 

target PSAs in new independent samples.  Thus, although defensive processes seem to 

have diminished the signal apparent in high risk-participants’ self-reports of message 

effectiveness, their neural data provided insight into processes that were not captured by 



their self-reports of effectiveness.  These insights can complement existing persuasion 

theories by indirectly revealing ways that MSV and argument strength affect high and 

low risk participants’ processing of anti-drug messages. 

 How do voters process political information during a campaign?  Although most 

widely applied to date in studies of health behavior change, the brain-as-predictor 

approach could also help address a number of different questions related to political 

communication research.  As one example, during the course of a political campaign, 

voters are exposed to different types of issue information about the candidates running 

for office. Historically, public opinion researchers generally found that many citizens 

cannot recall the issue positions of candidates and that issue positions rarely shaped votes 

or judgments (Lazarsfeld, Berelson, & Hazel, 1944; Berelson, Lazarsfeld, & McPhee 

1954; Campbell et al. 1964; Converse 1964). These findings generated the conclusions 

that citizens do relatively poorly when choosing candidates whose issue positions best 

reflect their own beliefs and that campaigns exert “minimal effects” on voting behavior. 

In recent years, however, researchers have begun to consider whether citizens must 

remember and use previously learned issue position information from media and other 

sources in order to vote for the candidates whose policy stances best reflect their beliefs. 

According to one particularly influential claim, advanced by Lodge and colleagues via 

their theory of on-line processing, they do not.  Their account theorized that voters can 

extract affective/emotional information about candidates as they learn about them and 

incorporate this information into an accumulated affective tally – a form of running 

average specific to that candidate. By the time ballots are cast, voters might have 

forgotten the candidates’ specific issue positions; yet earlier affective responses to actual 



issue information can still influence their candidate selections through the cumulative 

affective/emotional tally. (Lodge, McGraw, and Stroh 1989; Lodge, Steenbergen, and 

Brau 1995; also see Hastie and Park 1986). 

 One study (Coronel et al., 2012) conducted a unique and powerful test of this 

claim using a different brain-based method, the use of brain-damaged patients to identify 

causal pathways between brain-function in response to communication inputs and voter 

behavior.  More specifically, they tested whether explicit recall of information following 

exposure to messages about candidate issue positions was necessary by comparing 

individuals with profound amnesia caused by specific brain damage (i.e., to the 

hippocampus), whose severe memory impairments prevent them from remembering 

specific issue information associated with any particular candidate (but who can still form 

emotional memories), and healthy control participants.  If individuals can consistently 

vote for the candidates with political views most like their own, despite not explicitly 

remembering specific issue information, this implies that citizens can store information 

(e.g., from the media environment) in ways that are not reflected by self-report 

instruments (i.e., overt measures of recall), but nonetheless may have profound effects on 

political decisions. 

The team experimentally manipulated exposure to relevant information through 

messages about fictitious political candidates, and then assessed whether amnesic patients 

and healthy controls could vote for candidates whose issue positions come closest to their 

own political views after (Coronel et al., 2012).  The researchers found that the amnesic 

patients did vote for candidates whose issues positions were closest at high levels 

commensurate with healthy controls, suggesting that sound voting decisions do not 



require recall or recognition of previously learned associations between candidates and 

their issue positions.   

Normal voters, of course, are likely to use a combination of issue information and 

emotional memories. Indeed, one line of inquiry in the fields of political communication 

and public opinion attempt to determine the conditions under which memories for 

specific issue information or the affective tally are more likely to influence voting 

decisions (Kim & Garrett, 2012; Mitchell, 2012; Redlawsk, 2001).  Follow up research 

employing neuroimaging methods in healthy populations could contribute to this line of 

work by examining the extent to which neural activity from regions associated with these 

different forms of learning and memory processes (e.g., hippocampus, amygdala) are a 

better predictor of political attitudes or behaviors during candidate evaluation under 

different circumstances. 

What psychological processes underlie the effects of media violence on aggression?  

Given that the brain-as-predictor approach as currently conceptualized is relatively new, 

there are myriad areas that have not yet been examined, but might be fruitfully explored 

in the broader landscape of communication research.  For example, the brain-as-predictor 

approach might be used to address questions such as: Are effects of media violence on 

aggression driven more by differences in threat reactivity or emotion regulation in 

response to violent media (i.e., are media-violence induced aggression and/or stress 

responses driven more by alteration in bottom up or top down processing)?  Preliminary 

research has mapped neural regions associated with exposure to media violence (Weber, 

Ritterfeld, & Mathiak, 2006) and noted that exposure to violent video games is associated 

with decreased activity in prefrontal cognitive control regions during response inhibition 



(Hummer et al., 2010), but have not yet linked neural activity within these regions to 

subsequent aggressive behavior or violence outside of the scanner.   

One way to approach this question would be to specify neural activity in brain 

systems associated with fast emotional responses to threats (e.g., the amygdala) and 

emotion regulation (e.g., LPFC) as mediators of the relationship between exposure to 

media violence and subsequent aggressive behavior (measured through behavioral 

observation) and/or stress responses (measured physiologically).  In such a study, 

participants could be randomly assigned to exposure to violent and non-violent media as 

their neural activity is recorded.  Following the scanner session, participants could be 

offered an opportunity to engage in aggression.  If the relationship between media 

violence and aggression (and/or stress) were mediated solely by bottom up processes 

versus additional top down regulation, this might suggest different interventions to 

mitigate negative effects of media violence.  Such an approach could also inform our 

understanding of pathways to desensitization (i.e., is desensitization a product of 

diminished threat reactivity or of augmented ability to regulate automatic threat 

responses).   

Neural activity within regions of interest implicated in top-down or bottom-up 

processing could also be hypothesized as individual difference moderators of the effects 

of media violence on later aggressive behavior.  For example, it might be of interest to 

test whether individual differences in sensitivity of the brain’s reward system, cognitive 

control system, or connectivity between the two, in response to violent media moderate 

the relationship between exposure to the violent media and individual differences in real-

world aggression, stress responses, etc., following the scan. 



Neural activity as a complement to other measures 

The examples above illustrate a range of ways in which neural data can 

complement and extend what is learned from explicit self-reports (e.g., of reactions to 

health messages, of recall following exposure to political communications).  More 

generally, the brain-as-predictor approach builds on a foundation of behavioral research 

that has relied not only on self-report surveys and experimental outcomes but also 

implicit measures to understand a wide range of communication processes.  Implicit and 

indirect behavioral measures (e.g., response times, etc.), however, usually require 

interrupting or changing the natural flow of cognition—such measures typically apply 

time pressure or otherwise constrain deliberative thought (Fazio & Olson, 2003; 

Greenwald, Poehlman, Uhlmann, & Banaji, 2009).  Hence, though implicit measures are 

well-suited to assess concept accessibility and evaluations (Hefner, Rothmund, Klimmt, 

& Gollwitzer, 2011), they do not reveal the underlying mechanisms through which 

concepts and evaluations are formed and change.  By contrast, neural measures can 

record both explicit and implicit processes throughout the brain as they unfold.  Thus, 

although neuroimaging methods can be more costly to administer in comparison to other 

measures (e.g., reaction time measures, surveys), neural data can also provide 

complementary information that would be difficult to obtain otherwise. 

The brain-as-predictor approach also builds on a rich history in communication 

science and psychology of using biological measurement tools such as peripheral 

physiology, facial coding and other measures to operationalize psychological processes 

such as attention and arousal.  This work has made substantial advances in characterizing 

media attributes and qualities of interpersonal communication that produce such 



physiological reactions, but do not capture fine-grained cognitive processes responsible 

for these reactions (for a review, see Lang, Potter, & Bolls, 2009; Cacioppo, Tassinary, & 

Berntson, 2007).   Neural measures can complement these measurement tools.  With 

some caveats (discussed below), neural data can distinguish between a wide range of 

underlying cognitive and affective processes, and hence can complement other biological 

measures (which are related to, but not synonymous with brain function and may offer 

less specificity in underlying neurocognitive processes as they unfold).  Integrating 

physiological variables as proximal outcomes or additional mediators or moderators in 

models employing a brain-as-predictor framework will further help to open the black box 

of mechanisms underlying communication processes.   

Strengths, limitations and practical notes 

As described above, the brain-as-predictor approach is a relatively new and 

promising approach to theoretical and practical questions in communication science.  As 

with any method and associated measurement model, however, the brain-as-predictor 

approach has strengths and limitations.  Below, we outline theoretical and practical issues 

that research teams will need to consider when employing this approach (additional 

considerations, and a brief checklist for authors, reviewers and editors, can be found in 

the Appendix and throughout the manuscript above). 

Reverse inference. The issue of reverse inference in fMRI research is explained in 

detail by Weber and colleagues (this issue).  In brief, there is typically a one-to-many 

relationship between activity in any given neural region and the psychological functions 

it implements.   As such, inferring specific psychological processes from observed brain 

activity must be qualified with the caveats outlined by Weber and colleagues. Importantly 



for the brain-as-predictor approach, however, researchers have some control over the 

strength of inferences that are possible in the choices made during design.  As noted by 

Poldrack (2006), two ways to improve confidence in reverse inference are to “increase 

the selectivity of response in the brain region of interest, or increase the prior probability 

of the cognitive process in question” (p. 5). Although the experimenter cannot typically 

alter the physiological selectivity of a brain region (i.e., the range of stimuli that a brain 

region responds to/ range of psychological processes that it supports; c.f., Jackson-Hanen, 

Tompary, deBettencourt, & Turke-Brown, 2013), selectivity in the model can be 

increased by choosing more targeted brain regions spatially (i.e., smaller regions of 

interest; see section on functional ROIs above), and by examining networks of regions 

that together may be more selective for a given psychological process than a single 

region.  As discussed above, regions of interest can also be made more selective by using 

independent functional localizer tasks to identify regions of interest that are associated 

with specific psychological processes and then examining how these regions respond 

during a target task.  Especially in brain regions that cover large anatomical bounds, 

functional localizers often identify more targeted sub-regions.  Likewise, meta-analyses 

of specific neurocognitive processes can similarly produce more targeted regions of 

interest.  In addition, the use of databases such as the BrainMap database and Neurosynth 

can allow researchers to estimate selectivity, and hence provide information about the 

strength of the inference. 

Costs.  Neuroimaging methods, such as fMRI, are more financially costly to 

administer per participant than other measures (e.g., self-report questionnaires, implicit 

reaction time measures). However, the total cost of acquiring a neuroimaging dataset may 



be similar to some methods that are familiar to communication scientists (e.g., running a 

large-scale, longitudinal or nationally representative survey, collecting data in clinics), 

which likewise require considerable overhead for data acquisition and specialized 

training for analysis.  Also common to methods across the discipline, substantial 

investment of time and energy are needed to gain the requisite expertise to use the 

measures intelligently.  Both types of cost issues (financial and expertise) can be 

mitigated through collaborations across disciplines.  For example, drawing relatively 

small sub-samples of participants from larger-scale survey samples which have been 

specifically designed for representativeness in relation to a target larger-scale population 

has considerable benefits for both generalizability of the neuroscience findings and for 

the ability to gain a deeper understanding of mechanisms that may contribute to processes 

observed in the larger population (for a more complete review of methods and 

considerations for linking smaller neuroimaging samples and larger-scale population 

outcomes, see: Falk, Hyde, Mitchell, et al., 2013). 

Practical notes   

Choice of imaging modality. As noted above, although many recent examples of 

the brain-as-predictor approach have relied on fMRI as a primary method for acquiring 

brain data, many different neuroimaging technologies are amenable to the brain-as-

predictor approach, depending on what is called for by the research question; for 

example, fMRI offers excellent, uniform spatial resolution of the human brain (i.e., 

allows one to ask where in the brain cognitive processes are occurring) whereas other 

brain imaging techniques (e.g., event related potentials; ERPs) offer excellent temporal 

resolution (i.e., one can ask when or in what order do specific cognitive processes 



unfold).  Ultimately, combined use of neural measures with other tools in the 

communication research toolbox, such as self-report instruments, implicit behavioral 

measures, and other psychophysiological and broader biological approaches to 

understanding human thoughts, feelings and behaviors promises to provide a more 

comprehensive account of communication processes given the different strengths 

provided by each method.  

Statistical methods beyond the GLM.  It should also be noted that although many 

of the examples reviewed specified neural predictors in regression models, the brain-as-

predictor framework can also be used outside the confines of the general linear model 

(GLM).   In particular, prediction of outcomes from mean levels of activity in single 

brain regions of interest may ignore substantial amounts of information about the 

interplay of networks of regions and spatial and temporal patterns of activity within those 

regions.  Techniques beyond the GLM may be particularly well suited to circumventing 

these limitations. 

For example, Bayesian inference may be preferable when mental processes are 

best operationalized through brain networks of interest (versus individual regions of 

interest).  Linear regression models that use multiple neural regions as independent 

variables to predict behavioral outcomes often suffer from multicollinearity.  Thus, under 

the GLM framework, the researcher must examine each neural region in a separate 

regression model or collapse them into a single variable by averaging over activity across 

the network (with both approaches losing information about their joint contributions, and 

in the former case, needing to account for multiple comparisons).  However, Bayesian 

statisticians have developed clustering techniques that can allow researchers to explore 



multiple independent regions of interest in a brain-as-predictor model without imposing a 

priori constraints as to which regions cluster together to form a network (Curtis & Ghosh, 

2011).  Thus, a Bayesian approach can allow researchers using a brain-as-predictor 

framework to examine multiple neural regions or networks within the same predictive 

model, allowing for greater accuracy when examining the underlying processes that drive 

behavior.  Finally, an additional benefit of using Bayesian inference over traditional 

GLM approaches within a brain-as-predictor framework is the ability to make true 

probability statements about the relationship between neural predictors and outcomes of 

interest (Gelman, Carlin, Stern, & Rubin, 2003).  

Similarly, the past decade has seen substantial advances in machine learning and 

multivariate techniques for further exploring patterns of neural activity, especially fMRI 

data, that go beyond simple averages over an entire region of interest as typically done in 

the GLM (Bandettini, 2009; Mur, Bandettini, & Kriegeskorte, 2009; Norman, Polyn, 

Detre, & Haxby, 2006), as well as examining shared patterns across individuals in 

response to more naturalistic stimuli (Hasson et al., 2012).  More detail on these 

multivariate pattern analysis and intersubject correlation methods is explored by Weber 

and colleagues (this volume).  Such approaches could be used even more extensively in 

combination with communication-relevant behaviors and theories.  

Substantial gains have also been made with respect to cutting edge techniques that 

now allow for real time feedback based on neural activity (Sulzer et al., 2013).  Such 

techniques could be used to tailor communication interventions, for example by 

providing researchers feedback about neural responses to mediated communications; in 

response, researchers could alter the course of the narrative, production elements, or other 



key features based on an individual’s neural responses.  In aggregate, such information 

might also reveal unexpected combinations/permutations of communication features that 

are powerful across individuals, but not predicted by existing theories.  Likewise, 

provision of real time feedback to patients in response to different types of inputs (e.g., 

smokers’ responses to smoking imagery) could suggest new clinical treatments.  This 

type of feedback could be complemented by stimulation of specific brain regions to 

increase or temporarily block neural function (Antal, Nitsche, & Paulus, 2006; Camus et 

al., 2009; Fregni et al., 2005; Lang et al., 2005; Ruff, Driver, & Bestmann, 2009).  

Methods that allow temporary up and down regulation of targeted neural activity will 

also boost confidence in the causal pathways hypothesized, as well as real-world impact 

of these technologies for communication questions. 

Finally, computational models of cognition may also help expand the brain-as-

predictor framework. Computational models of cognition broadly refer to a set of 

computationally driven models of human mental processes that attempt to represent or act 

like cognitive systems. These systems can then be used to model behavior based on the 

structural properties of the neural system. For example, cognitive architectures that 

describe basic cognitive and perceptual processes and their links to neural function can be 

used to test hypotheses about more basic neural components involved in processing 

complex tasks, such as exposure to mass media messages (for reviews of one set of 

cognitive architectures, see; Borst, Taatgen, & Anderson, in press; Borst, Taatgen, & 

Rijn, in press; Lehman, Laird, & Rosenbloom, 2006). Cognitive architectures and other 

computational models of cognition can be used to model communication or 

psychological theories to predict behavioral outcomes, to the extent that such 



relationships have been previously established (Borst, Taatgen, & Anderson, in press; 

Borst, Taatgen, & Rijn, in press; Lehman, Laird, & Rosenbloom, 2006). The use of 

cognitive models to link neural processes and behavioral outcomes is one particularly 

promising, but still under developed, avenue that should be pursued to optimally leverage 

the brain-as-predictor approach in communication science. 

Conclusion 

Communication scholars can leverage advances in neuroscientific measurement tools and 

the accumulated knowledge on the neural correlates of many basic social, cognitive and 

affective processes to predict psychological and behavioral outcomes in response to 

communication within and beyond the laboratory.  This approach has considerable 

potential for testing existing theories or generating new ones.  Neuroimaging 

technologies offer the ability to monitor simultaneously activity associated with multiple 

mental processes, in real time as they unfold, without the need to interrupt the target task 

to request self-reports or to constrain controlled processing.  A small, but growing body 

of research in communication and psychology demonstrates that neural variables can 

predict additional variance in both individual and population level outcomes.   The 

present article outlines steps through which a broader range of key questions in 

communication science might be informed using models that specify neural predictors 

and relevant psychological or behavioral outcomes.  As with any set of methods, the 

neuroscience methods highlighted here carry significant strengths and limitations; thus, 

collaborations between neuroscientists and those with other complementary training 

within communication science will result in advances that are not possible for either 

discipline alone.  
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Figures 
 
 

 
 

Figure 1. The brain-as-predictor approach, reproduced from Berkman & Falk, 

2013. Investigations in social, cognitive and affective neuroscience have traditionally 

manipulated psychological processes and mapped their location in the brain (treating the 

brain as a dependent measure).  Psychologists have also traditionally manipulated 

psychological processes and observed their cognitive, behavioral and affective 

consequences.  The brain-as-predictor approach combines what has been learned in each 

of these literatures to hypothesize neural processes as independent variables that directly 

predict outcomes beyond the neuroimaging lab.  Note: arrows in this figure indicate 

conceptual relationships rather than causation. 

 
 



 
 
Figure 2. Overview of how to apply the brain-as-predictor approach to 

communication science.  

 
 
  
 
 

Step 1

Specification of hypotheses 
(neural variables as direct 
predictors, mediators or 

moderators of 
communication relevant 

outcomes) and selection of 
neural variables (e.g., 

Region(s) of Interest; ROI)

Step 2

Collect data (e.g., neural 
responses to anti-
smoking messages 

within ROI and reduction 
in smoking behavior)

Step 3

Combine neural data 
and behavioral 

outcomes in statistical 
models. Use brain as a 
predictor, mediator or 
moderator of relevant 

outcomes.
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