91 research outputs found

    Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200811000Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims. We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods. We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.Peer reviewe

    Analysis of combined radial velocities and activity of BD+20 1790: evidence supporting the existence of a planetary companion

    Get PDF
    Context. In a previous paper we reported a planetary companion to the young and very active K5Ve star BD+20 1790. We found that this star has a high level of stellar activity (log R'_HK = -3.7) that manifests in a plethora of phenomena (starspots, prominences, plages, large flares). Based on a careful study of these activity features and a deep discussion and analysis of the effects of the stellar activity on the radial velocity measurements, we demonstrated that the presence of a planet provided the best explanation for the radial velocity variations and all the peculiarities of this star. The orbital solution resulted in a close-in massive planet with a period of 7.78 days. However, a paper by Figueira et al. (2010, A&A, 513, L8) questioned the evidence for the planetary companion. Aims. This paper aims to more rigorously assess the nature of the radial velocity measurements with an expanded data set and new methods of analysis. Methods. We have employed Bayesian methods to simultaneously analyse the radial velocity and activity measurements based on a combined data set that includes new and previously published observations. Results. We conclude that the Bayesian analysis and the new activity study support the presence of a planetary companion to BD+20 1790. A new orbital solution is presented, after removing the two main contributions of stellar jitter, one that varies with the photometric period (2.8 days) and another that varies with the synodic period of the star-planet system (4.36 days). We present a new method to determine these jitter components, considering them as second and third signals in the system. A discussion on possible star-planet interaction is included, based on the Bayesian analysis of the activity indices, which indicates that they modulate with the synodic period. We propose two different sources for flare events in this system: one related to the geometry of the system and the relative movement of the star and planet, and a second one purely stochastic source that is related to the evolution of stellar surface active regions. Also, we observe for the first time the magnetic field of the star, from spectropolarimetric data

    Multiwavelength optical observations of chromospherically active binary systems. III. High resolution echelle spectra from Ca II H&K to Ca II IRT

    Get PDF
    This is the third paper of a series aimed at studying the chromosphere of active binary systems using the information provided for several optical spectroscopic features. High resolution echelle spectra including all the optical chromospheric activity indicators from the Ca II H & K to Ca II IRT lines are analysed here for 16 systems. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. Very broad wings have been found in the subtracted H_alpha profile of the very active star HU Vir. These profiles are well matched using a two-component Gaussian fit (narrow and broad) and the broad component can be interpreted as arising from microflaring. Red-shifted absorption features in the H_alpha line have been detected in several systems and excess emission in the blue wing of FG UMa was also detected. These features indicate that several dynamical processes, or a combination of them, may be involved. Using the E(H_alpha)/E(H_beta) ratio as a diagnostic we have detected prominence-like extended material viewed off the limb in many stars of the sample, and prominences viewed against the disk at some orbital phases in the dwarfs OU Gem and BF Lyn. The He I D_3 line has been detected as an absorption feature in mainly all the giants of the sample. Total filling-in of the He I D_3, probably due to microflaring activity, is observed in HU Vir. Self-absorption with red asymmetry is detected in the Ca II H & K lines of the giants 12 Cam, FG UMa and BM CVn. All the stars analysed show clear filled-in Ca II IRT lines or even notable emission reversal. The small values of the E(8542)/E(8498) ratio we have found indicate Ca II IRT emission arises from plage-like regions.Comment: Latex file with 38 pages, 25 figures. Full postscript (text and figures) available at http://www.ucm.es/info/Astrof/pub_dmg.html To be published in Astronomy & Astrophysics Supp.
    corecore