694 research outputs found
Tripartite and bipartite entanglement in continuous-variable tripartite systems
We examine one asymmetric adnd two fully symmetric Gaussian
continuous-variable systems in terms of their tripartite and bipartite
entanglement properties. We treat pure states and are able to find analytic
solutions using the undepleted pump approximation for the Hamiltonian models,
and standard beamsplitter relations for a model that mixes the outputs of
optical parametric oscillators. Our two symmetric systems exhibit perfect
tripartite correlations, but only in the unphysical limit of infinite
squeezing. For more realistic squeezing parameters, all three systems exhibit
both tripartite and bipartite entanglement. We conclude that none of the
outputs are completely analogous to either GHZ or W states, but there are
parameter regions where they produce T states introduced by Adesso \etal The
qualitative differences in the output states for different interaction
parameters indicate that continuous-variable tripartite quantum information
systems offer a versatility not found in bipartite systems.Comment: 18 pages, 6 figures. arXiv admin note: text overlap with
arXiv:1510.0182
Improved quantum correlations in second harmonic generation with a squeezed pump
We investigate the effects of a squeezed pump on the quantum properties and
conversion efficiency of the light produced in single-pass second harmonic
generation. Using stochastic integration of the two-mode equations of motion in
the positive-P representation, we find that larger violations of
continuous-variable harmonic entanglement criteria are available for lesser
effective interaction strengths than with a coherent pump. This enhancement of
the quantum properties also applies to violations of the Reid-Drummond
inequalities used to demonstrate a harmonic version of the
Einstein-Podolsky-Rosen paradox. We find that the conversion efficiency is
largely unchanged except for very low pump intensities and high levels of
squeezing.Comment: 19 pages, 7 figure
High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings
Antirelaxation surface coatings allow long spin relaxation times in
alkali-metal cells without buffer gas, enabling faster diffusion of the alkali
atoms throughout the cell and giving larger signals due to narrower optical
linewidths. Effective coatings were previously unavailable for operation at
temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can
allow potassium or rubidium atoms to experience hundreds of collisions with the
cell surface before depolarizing, and that an OTS coating remains effective up
to about 170 C for both potassium and rubidium. We consider the experimental
concerns of operating without buffer gas and with minimal quenching gas at high
vapor density, studying the stricter need for effective quenching of excited
atoms and deriving the optical rotation signal shape for atoms with resolved
hyperfine structure in the spin-temperature regime. As an example of a
high-temperature application of antirelaxation coated alkali vapor cells, we
operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of
6 fT/sqrt(Hz) and magnetic linewidth as narrow as 2 Hz.Comment: 8 pages, 5 figures. The following article appeared in Journal of
Applied Physics and may be found at http://link.aip.org/link/?jap/106/11490
First-principles quantum dynamics for fermions: Application to molecular dissociation
We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can
be simulated using a Gaussian phase-space representation method. In particular,
we consider the application of the mixed fermion-boson model to ultracold
quantum gases and simulate the dynamics of dissociation of a Bose-Einstein
condensate of bosonic dimers into pairs of fermionic atoms. We quantify
deviations of atom-atom pair correlations from Wick's factorization scheme, and
show that atom-molecule and molecule-molecule correlations grow with time, in
clear departures from pairing mean-field theories. As a first-principles
approach, the method provides benchmarking of approximate approaches and can be
used to validate dynamical probes for characterizing strongly correlated phases
of fermionic systems.Comment: Final published versio
Quantum dynamics of long-range interacting systems using the positive-P and gauge-P representations
We provide the necessary framework for carrying out stochastic positive-P and
gauge-P simulations of bosonic systems with long range interactions. In these
approaches, the quantum evolution is sampled by trajectories in phase space,
allowing calculation of correlations without truncation of the Hilbert space or
other approximations to the quantum state. The main drawback is that the
simulation time is limited by noise arising from interactions.
We show that the long-range character of these interactions does not further
increase the limitations of these methods, in contrast to the situation for
alternatives such as the density matrix renormalisation group. Furthermore,
stochastic gauge techniques can also successfully extend simulation times in
the long-range-interaction case, by making using of parameters that affect the
noise properties of trajectories, without affecting physical observables.
We derive essential results that significantly aid the use of these methods:
estimates of the available simulation time, optimized stochastic gauges, a
general form of the characteristic stochastic variance and adaptations for very
large systems. Testing the performance of particular drift and diffusion gauges
for nonlocal interactions, we find that, for small to medium systems, drift
gauges are beneficial, whereas for sufficiently large systems, it is optimal to
use only a diffusion gauge.
The methods are illustrated with direct numerical simulations of interaction
quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg
states in a Bose-Einstein condensate, also without the need for the typical
frozen gas approximation. We demonstrate that gauges can indeed lengthen the
useful simulation time.Comment: 19 pages, 11 appendix, 3 figure
Quantum optical waveform conversion
Currently proposed architectures for long-distance quantum communication rely
on networks of quantum processors connected by optical communications channels
[1,2]. The key resource for such networks is the entanglement of matter-based
quantum systems with quantum optical fields for information transmission. The
optical interaction bandwidth of these material systems is a tiny fraction of
that available for optical communication, and the temporal shape of the quantum
optical output pulse is often poorly suited for long-distance transmission.
Here we demonstrate that nonlinear mixing of a quantum light pulse with a
spectrally tailored classical field can compress the quantum pulse by more than
a factor of 100 and flexibly reshape its temporal waveform, while preserving
all quantum properties, including entanglement. Waveform conversion can be used
with heralded arrays of quantum light emitters to enable quantum communication
at the full data rate of optical telecommunications.Comment: submitte
Negative differential conductivity and quantum statistical effects in a three-site Bose-Hubbard model
The use of an electron beam to remove ultracold atoms from selected sites in an optical lattice has opened up new opportunities to study transport in quantum systems [R. Labouvie, Phys. Rev. Lett. 115, 050601 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.050601]. Inspired by this experimental result, we examine the effects of number difference, dephasing, and initial quantum statistics on the filling of an initially depleted middle well in the three-well inline Bose-Hubbard model. We find that the well-known phenomenon of macroscopic self-trapping is the main contributor to oscillatory negative differential conductivity in our model, with phase diffusion being a secondary effect. However, we find that phase diffusion is required for the production of direct atomic current, with the coherent process showing damped oscillatory currents. We also find that our results are highly dependent on the initial quantum states of the atoms in the system
Non-Gaussian continuous-variable entanglement and steering
Two Kerr-squeezed optical beams can be combined in a beam splitter to produce non-Gaussian continuousvariable entangled states. We characterize the non-Gaussian nature of the output by calculating the third-order cumulant of quadrature variables and predict the level of entanglement that could be generated by evaluating the Duan-Simon and Reid Einstein-Podolsky-Rosen criteria. These states have the advantage over Gaussian states and non-Gaussian measurement schemes in that the well known, efficient, and proven technology of homodyne detection may be used for their characterization. A physical demonstration maintaining the important features of the model could be realized using optical fibers, beam splitters, and homodyne detection
- …