332 research outputs found

    Homodyne Measurements on a Bose-Einstein Condensate

    Get PDF
    We investigate a non-destructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement back-action noise alone.Comment: 8 pages, 12 figures to appear in PR

    Quantum noise in optical fibers II: Raman jitter in soliton communications

    Full text link
    The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we predict that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other perturbations than the gain-related Gordon-Haus noise, for short pulses, assuming typical fiber parameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons, and is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise source, these effects are stronger for the more intense pulses needed to propagate as solitons in the short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and networking using ultrafast (subpicosecond) pulses.Comment: 3 figure

    Tripartite and bipartite entanglement in continuous-variable tripartite systems

    Full text link
    We examine one asymmetric adnd two fully symmetric Gaussian continuous-variable systems in terms of their tripartite and bipartite entanglement properties. We treat pure states and are able to find analytic solutions using the undepleted pump approximation for the Hamiltonian models, and standard beamsplitter relations for a model that mixes the outputs of optical parametric oscillators. Our two symmetric systems exhibit perfect tripartite correlations, but only in the unphysical limit of infinite squeezing. For more realistic squeezing parameters, all three systems exhibit both tripartite and bipartite entanglement. We conclude that none of the outputs are completely analogous to either GHZ or W states, but there are parameter regions where they produce T states introduced by Adesso \etal The qualitative differences in the output states for different interaction parameters indicate that continuous-variable tripartite quantum information systems offer a versatility not found in bipartite systems.Comment: 18 pages, 6 figures. arXiv admin note: text overlap with arXiv:1510.0182

    Gaussian operator bases for correlated fermions

    Full text link
    We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus enables first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness and positivity of the basis, and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anti-commuting Grassmann variables

    Quantum noise in optical fibers I: stochastic equations

    Full text link
    We analyze the quantum dynamics of radiation propagating in a single mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This allows quantum Langevin equations to be calculated, which have a classical form except for additional quantum noise terms. In practical calculations, it is more useful to transform to Wigner or +PP quasi-probability operator representations. These result in stochastic equations that can be analyzed using perturbation theory or exact numerical techniques. The results have applications to fiber optics communications, networking, and sensor technology.Comment: 1 figur

    Improved quantum correlations in second harmonic generation with a squeezed pump

    Full text link
    We investigate the effects of a squeezed pump on the quantum properties and conversion efficiency of the light produced in single-pass second harmonic generation. Using stochastic integration of the two-mode equations of motion in the positive-P representation, we find that larger violations of continuous-variable harmonic entanglement criteria are available for lesser effective interaction strengths than with a coherent pump. This enhancement of the quantum properties also applies to violations of the Reid-Drummond inequalities used to demonstrate a harmonic version of the Einstein-Podolsky-Rosen paradox. We find that the conversion efficiency is largely unchanged except for very low pump intensities and high levels of squeezing.Comment: 19 pages, 7 figure

    Quantum dynamics of long-range interacting systems using the positive-P and gauge-P representations

    Get PDF
    We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalisation group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.Comment: 19 pages, 11 appendix, 3 figure

    First-principles quantum dynamics for fermions: Application to molecular dissociation

    Full text link
    We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can be simulated using a Gaussian phase-space representation method. In particular, we consider the application of the mixed fermion-boson model to ultracold quantum gases and simulate the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick's factorization scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in clear departures from pairing mean-field theories. As a first-principles approach, the method provides benchmarking of approximate approaches and can be used to validate dynamical probes for characterizing strongly correlated phases of fermionic systems.Comment: Final published versio
    • …
    corecore