8,171 research outputs found

    Decay Process for Three - Species Reaction - Diffusion System

    Full text link
    We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form A+B+CDA+B+C\to D. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.Comment: 6 pages, 3 figures, Late

    Persistence in systems with conserved order parameter

    Full text link
    We consider the low-temperature coarsening dynamics of a one-dimensional Ising ferromagnet with conserved Kawasaki-like dynamics in the domain representation. Domains diffuse with size-dependent diffusion constant, D(l)lγD(l) \propto l^\gamma with γ=1\gamma = -1. We generalize this model to arbitrary γ\gamma, and derive an expression for the domain density, N(t)tϕN(t) \sim t^{-\phi} with ϕ=1/(2γ)\phi=1/(2-\gamma), using a scaling argument. We also investigate numerically the persistence exponent θ\theta characterizing the power-law decay of the number, Np(t)N_p(t), of persistent (unflipped) spins at time tt, and find Np(t)tθN_{p}(t)\sim t^{-\theta} where θ\theta depends on γ\gamma. We show how the results for ϕ\phi and θ\theta are related to similar calculations in diffusion-limited cluster-cluster aggregation (DLCA) where clusters with size-dependent diffusion constant diffuse through an immobile `empty' phase and aggregate irreversibly on impact. Simulations show that, while ϕ\phi is the same in both models, θ\theta is different except for γ=0\gamma=0. We also investigate models that interpolate between symmetric domain diffusion and DLCA.Comment: 9 pages, minor revision

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering

    Normal-superfluid interaction dynamics in a spinor Bose gas

    Get PDF
    Coherent behavior of spinor Bose-Einstein condensates is studied in the presence of a significant uncondensed (normal) component. Normal-superfluid exchange scattering leads to a near-perfect local alignment between the spin fields of the two components. Through this spin locking, spin-domain formation in the condensate is vastly accelerated as the spin populations in the condensate are entrained by large-amplitude spin waves in the normal component. We present data evincing the normal-superfluid spin dynamics in this regime of complicated interdependent behavior.Comment: 5 pages, 4 fig

    On the Modelling of Epidemics

    Full text link
    18 pages, 1 article*On the Modelling of Epidemics* (Castillo-Chavez, C.; Cooke, K.; Levin, S. A.) 18 page

    Tests for Mortality and Recruitment in a K-Sample Tag-Recapture Experiment

    Full text link
    16 pages, 1 article*Tests for Mortality and Recruitment in a K-Sample Tag-Recapture Experiment* (Pollock, K. H.; Solomon, D. L.; Robson, D. S.) 16 page

    Renormalization Group Study of the A+B->0 Diffusion-Limited Reaction

    Full text link
    The A+B0A + B\to 0 diffusion-limited reaction, with equal initial densities a(0)=b(0)=n0a(0) = b(0) = n_0, is studied by means of a field-theoretic renormalization group formulation of the problem. For dimension d>2d > 2 an effective theory is derived, from which the density and correlation functions can be calculated. We find the density decays in time as a,b \sim C\sqrt{\D}(Dt)^{-d/4} for d<4d < 4, with \D = n_0-C^\prime n_0^{d/2} + \dots, where CC is a universal constant, and CC^\prime is non-universal. The calculation is extended to the case of unequal diffusion constants DADBD_A \neq D_B, resulting in a new amplitude but the same exponent. For d2d \le 2 a controlled calculation is not possible, but a heuristic argument is presented that the results above give at least the leading term in an ϵ=2d\epsilon = 2-d expansion. Finally, we address reaction zones formed in the steady-state by opposing currents of AA and BB particles, and derive scaling properties.Comment: 17 pages, REVTeX, 13 compressed figures, included with epsf. Eq. (6.12) corrected, and a moderate rewriting of the introduction. Accepted for publication in J. Stat. Phy
    corecore